On the localization of ubiquinone in phosphatidylcholine bilayers.

[1]  P. Quinn,et al.  Fluorescence probe studies of the distribution of ubiquinone homologues in bilayers of dipalmitoylglycerophosphocholine. , 1983, European journal of biochemistry.

[2]  R. Capaldi,et al.  Arrangement of proteins in the mitochondrial inner membrane. , 1982, Biochimica et biophysica acta.

[3]  P. Quinn,et al.  The polyisoprenoid chain length influences the interaction of ubiquinones with phospholipid bilayers. , 1982, Biochimica et biophysica acta.

[4]  P. Quinn,et al.  The distribution of ubiquinone-10 in phospholipid bilayers. A study using differential scanning calorimetry. , 1982, European journal of biochemistry.

[5]  P. Quinn,et al.  The interaction of coenzyme Q with dipalmitoylphosphatidylcholine bilayers , 1981, FEBS letters.

[6]  A. Alonso,et al.  On the interaction of ubiquinones with phospholipid bilayers , 1981 .

[7]  E. Bertoli,et al.  Incorporation of ubiquinone homologs into lipid vesicles and mitochondrial membranes. , 1981, Archives of biochemistry and biophysics.

[8]  T. McIntosh,et al.  Effects of n-alkanes on the morphology of lipid bilayers. A freeze-fracture and negative stain analysis. , 1981, Biochimica et biophysica acta.

[9]  G. Feigenson,et al.  1H-NMR study of the location and motion of ubiquinones in perdeuterated phosphatidylcholine bilayers. , 1981, Biochimica et biophysica acta.

[10]  T. McIntosh Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. , 1980, Biophysical journal.

[11]  E. Oldfield,et al.  NMR of membranes , 1980 .

[12]  E. Hurt,et al.  Vectorial redox reactions of physiological quinones. I. Requirement of a minimum length of the isoprenoid side chain. , 1979, Biochimica et biophysica acta.

[13]  G. Hauska,et al.  Vectorial redox reactions of physiological quinones. II. A study of transient semiquinone formation. , 1979, Biochimica et biophysica acta.

[14]  J. Corless,et al.  The direct measurement of temperature changes within freeze‐fracture specimens during rapid quenching in liquid coolants , 1978, Journal of microscopy.

[15]  G. Hauska Plasto‐ and ubiquinone as translocators of electrons and protons through membranes A facilitating role of the isoprenoid side chain , 1977, FEBS letters.

[16]  R. J. Cushley,et al.  Structure and stability of vitamin E – lecithin and phytanic acid – lecithin bilayers studied by 13C and 31P nuclear magnetic resonance , 1977 .

[17]  P. Mitchell,et al.  Possible molecular mechanisms of the protonmotive function of cytochrome systems. , 1976, Journal of theoretical biology.

[18]  R. J. Cushley,et al.  13C Fourier transform nuclear magnetic resonance. XII. Structure of the phytol–lecithin bilayer. Application of electric field effects , 1976 .

[19]  V. Luzzati,et al.  Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. , 1973, Journal of molecular biology.

[20]  M. Klingenberg,et al.  The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. , 1973, European journal of biochemistry.

[21]  F. B. Rosevear The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents , 1954 .