Exploiting item co‐utility to improve collaborative filtering recommendations
暂无分享,去创建一个
Rodrygo L. T. Santos | Adriano Veloso | Nivio Ziviani | Aline Bessa | N. Ziviani | Adriano Veloso | Aline Bessa
[1] John Riedl,et al. Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.
[2] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[3] A. Tversky. Elimination by aspects: A theory of choice. , 1972 .
[4] Saul Vargas,et al. Rank and relevance in novelty and diversity metrics for recommender systems , 2011, RecSys '11.
[5] Gediminas Adomavicius,et al. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.
[6] E. Elton. Modern portfolio theory and investment analysis , 1981 .
[7] Anísio Lacerda,et al. Multiobjective Pareto-Efficient Approaches for Recommender Systems , 2014, ACM Trans. Intell. Syst. Technol..
[8] Yuli Ye,et al. Max-Sum diversification, monotone submodular functions and dynamic updates , 2012, PODS '12.
[9] Bracha Shapira,et al. Recommender Systems Handbook , 2015, Springer US.
[10] Mi Zhang,et al. Avoiding monotony: improving the diversity of recommendation lists , 2008, RecSys '08.
[11] Craig MacDonald,et al. Exploiting query reformulations for web search result diversification , 2010, WWW '10.
[12] Tie-Yan Liu,et al. Relational click prediction for sponsored search , 2012, WSDM '12.
[13] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[14] Abraham Bookstein,et al. Information retrieval: A sequential learning process , 1983, J. Am. Soc. Inf. Sci..
[15] S. Robertson. The probability ranking principle in IR , 1997 .
[16] Jun Wang,et al. Top-k Retrieval Using Facility Location Analysis , 2012, ECIR.
[17] Sreenivas Gollapudi,et al. An axiomatic approach for result diversification , 2009, WWW '09.
[18] Divesh Srivastava,et al. On query result diversification , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[19] Nina Mishra,et al. Predicting Consumer Behavior in Commerce Search , 2012, ICML.
[20] Michael D. Gordon,et al. A utility theoretic examination of the probability ranking principle in information retrieval , 1991, J. Am. Soc. Inf. Sci..
[21] G. Casella. Illustrating empirical Bayes methods , 1992 .
[22] David Heckerman,et al. Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.
[23] David Johannes Wüpper,et al. An empirical analysis , 2015 .
[24] Derek L. Hansen,et al. Mixing it up: recommending collections of items , 2009, CHI.
[25] Jingjing Liu,et al. Personalizing information retrieval for multi‐session tasks: Examining the roles of task stage, task type, and topic knowledge on the interpretation of dwell time as an indicator of document usefulness , 2015, J. Assoc. Inf. Sci. Technol..
[26] Jun Wang,et al. Mean-Variance Analysis: A New Document Ranking Theory in Information Retrieval , 2009, ECIR.
[27] S. S. Ravi,et al. Heuristic and Special Case Algorithms for Dispersion Problems , 1994, Oper. Res..
[28] Jason Weston,et al. Latent Structured Ranking , 2012, UAI.
[29] Roberto Turrin,et al. Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.
[30] Earl L. Taylor,et al. Predicting Consumer Behavior , 2014 .
[31] Evaggelia Pitoura,et al. Search result diversification , 2010, SGMD.
[32] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[33] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.