Planarity of products of two linearized polynomials

Abstract Let L 1 ( x ) and L 2 ( x ) be linearized polynomials over F q n . We give conditions when the product L 1 ( x ) ⋅ L 2 ( x ) defines a planar mapping on F q n . For a polynomial L over F q n , let M ( L ) = { α ∈ F q n : L ( x ) + α ⋅ x is bijective on F q n } . We show that the planarity of the product L 1 ( x ) ⋅ L 2 ( x ) is linked with the set M ( L ) of a suitable linearized polynomial L . We use this relation to describe families of such planar mappings as well as to obtain nonexistence results.

[1]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[2]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[3]  Aart Blokhuis,et al.  The Number of Directions Determined by a Function f on a Finite Field , 1995, J. Comb. Theory, Ser. A.

[4]  L. Rédei,et al.  Lückenhafte Polynome über endlichen Körpern , 1970 .

[5]  Simeon Ball The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.

[6]  Robert S. Coulter,et al.  Commutative presemifields and semifields , 2008 .

[7]  P. Dembowski,et al.  Planes of ordern with collineation groups of ordern2 , 1968 .

[8]  Marie Henderson,et al.  Permutations amongst the Dembowski-Ostrom polynomials , 2001 .

[9]  Gohar M. M. Kyureghyan Constructing permutations of finite fields via linear translators , 2009, J. Comb. Theory, Ser. A.

[10]  Thierry P. Berger,et al.  On Almost Perfect Nonlinear Functions Over$mmb F_2^n$ , 2006, IEEE Transactions on Information Theory.

[11]  Xiang-Dong Hou,et al.  On certain diagonal equations over finite fields , 2009, Finite Fields Their Appl..

[12]  Cunsheng Ding,et al.  A family of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[13]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[14]  Cunsheng Ding,et al.  Signal Sets From Functions With Optimum Nonlinearity , 2007, IEEE Transactions on Communications.

[15]  Yann Laigle-Chapuy,et al.  A Note on a Class of Quadratic Permutations over F2n , 2007, AAECC.