Personalization for the Semantic Web

Searching for the meaning of the word “personalization” on a popular search engine, one finds twenty-three different answers, including “the process of matching categorized content with different end users based on business rules ... upon page request to a Webserver”, “using continually adjusted user profiles to match content or services to individuals”, and also “real-time tailoring of displays, particularly Web pages, to a specific customer's known preferences, such as previous purchases”. A little more generally, personalization is a process by which it is possible to give the user optimal support in accessing, retrieving, and storing information, where solutions are built so as to fit the preferences, the characteristics and the taste of the individual. This result can be achieved only by exploiting machine-interpretable semantic information, e.g. about the possible resources, about the user him/herself, about the context, about the goal of the interaction. Personalization is realized by an inferencing process applied to the semantic information, which can be carried out in many different ways depending on the specific task. The objective of this paper is to provide a coherent introduction into issues and methods for realizing personalization in the Semantic Web.

[1]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[2]  Helmut Prendinger,et al.  Reasoning about action and change , 1996, J. Log. Lang. Inf..

[3]  Timothy W. Finin,et al.  A policy language for a pervasive computing environment , 2003, Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for Distributed Systems and Networks.

[4]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[5]  Marcus Specht,et al.  Empirical Evaluation of Adaptive Annotation in Hypermedia. , 1998 .

[6]  Stefan Decker,et al.  TRIPLE - An RDF Query, Inference, and Transformation Language , 2001, INAP.

[7]  Peter Dolog,et al.  Integrating Adaptive Hypermedia Techniques and Open RDF-based Environments , 2003, WWW.

[8]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[9]  Gr Gerd Wagner RuleML, SWRL and REWERSE : towards a general web rule language framework , 2004 .

[10]  Hongjing Wu,et al.  AHAM: a Dexter-based reference model for adaptive hypermedia , 1999, Hypertext.

[11]  Piero A. Bonatti,et al.  Driving and monitoring provisional trust negotiation with metapolicies , 2005, Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY'05).

[12]  Matthias Schneider-Hufschmidt,et al.  Adaptive User Interfaces: Principles and Practice , 1993 .

[13]  Roy Rada,et al.  Interactive Media , 1995, Springer New York.

[14]  Peter Brusilovsky,et al.  Ontology-based Framework for User Model Interoperability in Distributed Learning Environments , 2005 .

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  Matteo Baldoni,et al.  Curriculum Model Checking: Declarative Representation and Verification of Properties , 2007, EC-TEL.

[17]  Eyal Oren,et al.  Sindice.com: Weaving the Open Linked Data , 2007, ISWC/ASWC.

[18]  Nicola Henze Personalization Services for the Semantic Web : The Personal Reader Framework , 2005 .

[19]  Pilar Rodríguez Marín,et al.  Dynamic generation of adaptive Internet-based courses , 1999, J. Netw. Comput. Appl..

[20]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[21]  Ira P. Goldstein,et al.  The genetic graph: a representation for the evolution of procedural knowledge , 1979 .

[22]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[23]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[24]  A. Kobsa User Modeling : Recent Work , Prospects and Hazards , 1993 .

[25]  Peter Brusilovsky,et al.  ELM-ART: An Adaptive Versatile System for Web-based Instruction , 2001 .

[26]  Alfred Kobsa,et al.  Generic User Modeling Systems , 2001, User Modeling and User-Adapted Interaction.

[27]  Ioannis P. Vlahavas,et al.  DR-DEVICE: A Defeasible Logic System for the Semantic Web , 2004, PPSWR.

[28]  Laura Giordano,et al.  Dealing with Concurrent Actions in Modal Action Logics , 1998, ECAI.

[29]  Arjohn Kampman,et al.  SeRQL: An RDF Query and Transformation Language , 2004 .

[30]  Jeremy J. Carroll,et al.  Named graphs, provenance and trust , 2005, WWW '05.

[31]  Eelco Herder,et al.  Exploiting Preference Queries for Searching Learning Resources , 2007, EC-TEL.

[32]  Nicola Henze,et al.  The Personal Publication Reader: Illustrating Web Data Extraction, Personalization and Reasoning for the Semantic Web , 2005, ESWC.

[33]  Nora Koch,et al.  Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling Techniques and Development Process , 2001, Softwaretechnik-Trends.

[34]  Axel Polleres,et al.  From SPARQL to rules (and back) , 2007, WWW '07.

[35]  James A. Hendler,et al.  The Semantic Web — ISWC 2002 , 2002, Lecture Notes in Computer Science.

[36]  Christian Bizer,et al.  Using context- and content-based trust policies on the semantic web , 2004, WWW Alt. '04.

[37]  Stephen Farrell,et al.  Activity management as a Web service , 2006, IBM Syst. J..

[38]  Alberto Martelli,et al.  Reasoning About Interaction Protocols for Web Service Composition , 2004, WSFM.

[39]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[40]  Timothy W. Finin,et al.  Policy-Based Access Control for an RDF Store , 2005, IJCAI 2007.

[41]  Nicola Henze,et al.  Enabling Advanced and Context-Dependent Access Control in RDF Stores , 2007, ISWC/ASWC.

[42]  Ian Witten,et al.  Data Mining , 2000 .

[43]  Nicola Henze,et al.  Personal Reader Agent : Personalized Access to Configurable Web Services , 2006, LWA.

[44]  Peter Brusilovsky,et al.  Methods and techniques of adaptive hypermedia , 1996, User Modeling and User-Adapted Interaction.

[45]  Tran Cao Son,et al.  Formalizing sensing actions A transition function based approach , 2001, Artif. Intell..

[46]  Boris Brandherm,et al.  Gumo - The General User Model Ontology , 2005, User Modeling.

[47]  Michael Gelfond,et al.  Representing Action and Change by Logic Programs , 1993, J. Log. Program..

[48]  Hans Tompits,et al.  Reasoning Methods for Personalization on the Semantic Web , 2004 .

[49]  Cristina Baroglio,et al.  Web-Based Adaptive Tutoring: An Approach Based on Logic Agents and Reasoning about Actions , 2004, Artificial Intelligence Review.

[50]  Nicola Henze,et al.  A Personalization Service for Curriculum Planning , 2006, LWA.

[51]  Camilla B. Schwind A Logic Based Framework for Action Theories , 1996 .

[52]  Peter Brusilovsky,et al.  Adaptive Hypermedia , 2001, User Modeling and User-Adapted Interaction.

[53]  Fabian Abel User Awareness and Personalization in Semantic Portals , 2005 .

[54]  François Fages,et al.  Principles and Practice of Semantic Web Reasoning, Third International Workshop, PPSWR 2005, Dagstuhl Castle, Germany, September 11-16, 2005, Proceedings , 2005, PPSWR.

[55]  Anthony Jameson,et al.  Numerical uncertainty management in user and student modeling: An overview of systems and issues , 2005, User Modeling and User-Adapted Interaction.

[56]  José Júlio Alferes,et al.  Towards Generic Query, Update, and Event Languages for the Semantic Web , 2004, PPSWR.

[57]  Peter Dolog,et al.  The Personal Reader: Personalizing and Enriching Learning Resources Using Semantic Web Technologies , 2004, AH.

[58]  Peter Brusilovsky,et al.  Web-Based Education for All: A Tool for Development Adaptive Courseware , 1998, Comput. Networks.

[59]  Wolfgang Nejdl,et al.  Adaptation in Open Corpus Hypermedia , 2001 .

[60]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[61]  Sheila A. McIlraith,et al.  Agent-based composite services in DAML-S: The behavior-oriented design of an intelligent semantic web , 2003 .

[62]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[63]  J. Davenport Editor , 1960 .

[64]  Stephan Weibelzahl,et al.  Developing Adaptive Internet Based Courses with the Authoring System NetCoach , 2001, OHS-7/SC-3/AH-3.

[65]  Amit Jain,et al.  Secure resource description framework: an access control model , 2006, SACMAT '06.

[66]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[67]  Wolfgang Nejdl,et al.  A logical characterization of adaptive educational hypermedia , 2004, New Rev. Hypermedia Multim..

[68]  Jorge Lobo,et al.  Adding Knowledge to the Action Description Language A , 1997, AAAI/IAAI.

[69]  Andreas Herzig,et al.  Modal Tableaux for Reasoning About Actions and Plans , 1997, ECP.

[70]  Laura Giordano,et al.  Programming Rational Agents in a Modal Action Logic , 2004, Annals of Mathematics and Artificial Intelligence.

[71]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[72]  Cristina Baroglio,et al.  Reasoning about learning object metadata for adapting SCORM courseware , 2004 .

[73]  Laura Giordano,et al.  An Abductive Proof Procedure for Reasoning About Actions in Modal Logic Programming , 1996, NMELP.

[74]  Nicola Henze,et al.  Personalization Functionality for the Semantic Web: Architectural Outline and First Sample Implementations , 2004 .

[75]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[76]  Frank van Harmelen,et al.  A semantic web primer , 2004 .

[77]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[78]  Tran Cao Son,et al.  Adapting Golog for Programming the Semantic Web , 2001 .

[79]  Stefan Decker,et al.  TRIPLE - A Query, Inference, and Transformation Language for the Semantic Web , 2002, SEMWEB.

[80]  Mayer D. Schwartz,et al.  The Dexter Hypertext Reference Model , 1994, CACM.

[81]  Wolfgang Nejdl,et al.  Extendible Adaptive Hypermedia Courseware: Integrating Different Courses and Web Material , 2000, AH.

[82]  Paul De Bra,et al.  AHA! Version 2.0, More adaptation flexibility for authors , 2002 .

[83]  Nicola Henze,et al.  Logically Characterizing Adaptive Educational Hypermedia Systems , 2003 .