Objective perimetry and progression of multiple sclerosis

[1]  T. Maddess,et al.  Comparing Objective Perimetry, Matrix Perimetry, and Regional Retinal Thickness in Mild Diabetic Macular Edema , 2021, Translational vision science & technology.

[2]  C. Lebrun-Frénay,et al.  Should we still only rely on EDSS to evaluate disability in multiple sclerosis patients? A study of inter and intra rater reliability. , 2021, Multiple sclerosis and related disorders.

[3]  Eman N. Ali,et al.  Assessing migraine patients with multifocal pupillographic objective perimetry , 2021, BMC Neurology.

[4]  D. Arnold,et al.  Predicting disability progression and cognitive worsening in multiple sclerosis using patterns of grey matter volumes , 2021, Journal of Neurology, Neurosurgery, and Psychiatry.

[5]  R. Malik,et al.  Abnormal Dynamic Pupillometry Relates to Neurologic Disability and Retinal Axonal Loss in Patients With Multiple Sclerosis , 2021, Translational vision science & technology.

[6]  E. McKone,et al.  Correlation of Central Versus Peripheral Macular Structure-Function With Acuity in Age-Related Macular Degeneration , 2021, Translational vision science & technology.

[7]  D. Piñero,et al.  Binocular, Accommodative and Oculomotor Alterations In Multiple Sclerosis: A Review , 2020, Seminars in ophthalmology.

[8]  A. James,et al.  Localization of Neuronal Gain Control in the Pupillary Response , 2019, Front. Neurol..

[9]  M. Comabella,et al.  Biomarkers in Multiple Sclerosis. , 2019, Cold Spring Harbor perspectives in medicine.

[10]  F. Barkhof,et al.  Predicting clinical progression in multiple sclerosis after 6 and 12 years , 2019, European journal of neurology.

[11]  C. Lueck,et al.  Objective Perimetry in Sporting-Related Mild Traumatic Brain Injury. , 2019, Ophthalmology (Rochester, Minn.).

[12]  A. James,et al.  Retinotopic effects of visual attention revealed by dichoptic multifocal pupillography , 2018, Scientific Reports.

[13]  David H. Miller,et al.  Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria , 2017, The Lancet Neurology.

[14]  Andrew Bell,et al.  Comparing multifocal pupillographic objective perimetry (mfPOP) and multifocal visual evoked potentials (mfVEP) in retinal diseases , 2017, Scientific Reports.

[15]  A. James,et al.  Blue Multifocal Pupillographic Objective Perimetry in Glaucoma. , 2015, Investigative ophthalmology & visual science.

[16]  A. James,et al.  Luminance and colour variant pupil perimetry in glaucoma , 2014, Clinical & experimental ophthalmology.

[17]  A. James,et al.  Multifocal Pupillography in Early Age-Related Macular Degeneration , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[18]  A. James,et al.  Pupillary response to sparse multifocal stimuli in multiple sclerosis patients , 2014, Multiple sclerosis.

[19]  L. Frishman,et al.  Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis , 2014, Multiple sclerosis.

[20]  A. James,et al.  The pupillary response to color and luminance variant multifocal stimuli. , 2013, Investigative ophthalmology & visual science.

[21]  A. James,et al.  Contraction anisocoria: segregation, summation, and saturation in the pupillary pathway. , 2011, Investigative ophthalmology & visual science.

[22]  A. Sillito,et al.  Always returning: feedback and sensory processing in visual cortex and thalamus , 2006, Trends in Neurosciences.

[23]  Rasa Ruseckaite,et al.  Sparse multifocal stimuli for the detection of multiple sclerosis , 2005, Annals of neurology.

[24]  C. Lueck,et al.  Multiple sclerosis seen through new eyes , 2017, Clinical and Experimental Ophthalmology.

[25]  S. Graham,et al.  Afferent visual pathways in multiple sclerosis: a review , 2017, Clinical & experimental ophthalmology.