Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effects

Abstract Aero engine components like compressor discs normally operate under harsh conditions like complex multiaxial stress states. Notch effect is often critical for structural integrity assessment in virtue of complex structure and discontinuities. According to the notch effect under cyclic loadings, a computational framework for multiaxial fatigue analysis of compressor discs is established by coupling finite element (FE) simulation of stress gradient with Fatemi-Socie (FS) criterion. Specifically, a notch support extension method accounting for stress gradient effect is elaborated through elasto-plastic FE analysis, which can be determined for fatigue life prediction of arbitrary shaped components. Experimental fatigue data for smooth and notched specimens of TC4 and GH4169 alloys demonstrated the appropriateness of the proposed computational approach. The applicability and performance of the prediction model to a compressor blade-disc attachment subjected to field spectra is presented. Results show that testing effect can be significantly reduced by using this framework with acceptable prediction accuracy.

[1]  J. A. Araújo,et al.  Estimation of fretting fatigue life using a multiaxial stress-based critical distance methodology , 2015 .

[2]  Walter D. Pilkey Peterson's Stress Concentration Factors , 1997 .

[3]  S. Fouvry,et al.  From uni- to multi-axial fretting-fatigue crack nucleation: Development of a stress-gradient-dependent critical distance approach , 2014 .

[4]  Wang Yan-rong Fatigue life prediction of turbine disk based on stress gradient , 2013 .

[5]  Ewald Macha,et al.  Verification of fatigue critical plane position according to variance and damage accumulation methods under multiaxial loading , 2014 .

[6]  Haoyang Wei,et al.  A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials , 2017 .

[7]  Shun-Peng Zhu,et al.  Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials , 2018, International Journal of Fatigue.

[8]  Shun-Peng Zhu,et al.  Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants , 2017, Materials.

[9]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[10]  Ayhan Ince,et al.  Innovative computational modeling of multiaxial fatigue analysis for notched components , 2016 .

[11]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[12]  V. V. Bolotin Fatigue Life Prediction of Structures , 1994 .

[13]  Luca Susmel,et al.  The theory of critical distances: a review of its applications in fatigue☆ , 2008 .

[14]  K. J. Miller,et al.  A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions , 1973 .

[15]  Alfred Scholz,et al.  Notch Support for LCF-Loading: A Fracture Mechanics Approach , 2016 .

[16]  V. F. González-Albuixech,et al.  On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels , 2018 .

[17]  Abílio M. P. De Jesus,et al.  Strain energy-based fatigue life prediction under variable amplitude loadings , 2018 .

[18]  W. Findley A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending , 1959 .

[19]  David Taylor,et al.  An Elasto-Plastic Reformulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components Failing in the Low/Medium-Cycle Fatigue Regime , 2010 .

[20]  Guian Qian,et al.  Comparison of constraint analyses with global and local approaches under uniaxial and biaxial loadings , 2018 .

[21]  Yao Weixing,et al.  On the fatigue notch factor, Kf , 1995 .

[22]  M. Olsson,et al.  On the effect of random defects on the fatigue notch factor at different stress ratios , 2012 .

[23]  Luca Susmel,et al.  The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading , 2016 .

[24]  S. Mahadevan,et al.  A unified multiaxial fatigue damage model for isotropic and anisotropic materials , 2007 .

[25]  Shun-Peng Zhu,et al.  Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept , 2018, International Journal of Fatigue.

[26]  Yi Huang,et al.  A novel structural stress approach for multiaxial fatigue strength assessment of welded joints , 2014 .

[27]  Weiwen Peng,et al.  Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty , 2016, Reliab. Eng. Syst. Saf..

[28]  Abílio M. P. De Jesus,et al.  Local unified probabilistic model for fatigue crack initiation and propagation: Application to a notched geometry , 2013 .

[29]  Hanno Gottschalk,et al.  Combined Notch and Size Effect Modeling in a Local Probabilistic Approach for LCF , 2017, 1709.00320.

[30]  Pedro M.G.P. Moreira,et al.  A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters , 2017 .

[31]  Jan Papuga A survey on evaluating the fatigue limit under multiaxial loading , 2011 .

[32]  Qiang Liu,et al.  Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations , 2017 .

[33]  M. Ayatollahi,et al.  On the necessity of using critical distance model in mixed mode brittle fracture prediction of V-notched Brazilian disk specimens under negative mode І conditions , 2016 .

[34]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[35]  Weiwen Peng,et al.  Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks , 2018, International Journal of Mechanical Sciences.

[36]  Claudio Braccesi,et al.  Development of a new simple energy method for life prediction in multiaxial fatigue , 2018, International Journal of Fatigue.

[37]  Yu Zhang,et al.  Structural reliability analysis and uncertainties‐based collaborative design and optimization of turbine blades using surrogate model , 2018, Fatigue & Fracture of Engineering Materials & Structures.

[38]  Yingdong Song,et al.  Evaluation of multiaxial fatigue life prediction criteria for Ni-based superalloy GH4169 , 2018 .

[39]  David L. McDowell,et al.  Probabilistic framework for a microstructure-sensitive fatigue notch factor , 2010 .

[40]  Shun-Peng Zhu,et al.  Fatigue reliability assessment of turbine discs under multi‐source uncertainties , 2018 .

[41]  Sebastian Schmitz,et al.  Probabilistic LCF Risk Evaluation of a Turbine Vane by Combined Size Effect and Notch Support Modeling , 2017 .

[42]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[43]  José M. Martínez-Esnaola,et al.  A universally applicable multiaxial fatigue criterion in 2D cyclic loading , 2018 .

[44]  Jiang A fatigue criterion for general multiaxial loading , 2000 .

[45]  Andrea Carpinteri,et al.  Expected position of the fatigue fracture plane by using the weighted mean principal Euler angles , 2002 .

[46]  Andrea Carpinteri,et al.  Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts , 2016 .

[47]  Ayhan Ince A novel technique for multiaxial fatigue modelling of ground vehicle notched components , 2015 .

[48]  Y. Garud A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings , 1981 .

[49]  Andrea Carpinteri,et al.  A review of multiaxial fatigue criteria for random variable amplitude loads , 2017 .

[50]  Shun-Peng Zhu,et al.  Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction , 2018, International Journal of Damage Mechanics.

[51]  Yingdong Song,et al.  Effect of notch geometry on the fatigue strength and critical distance of TC4 titanium alloy , 2017 .

[52]  Jing Li,et al.  Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach , 2011 .

[53]  Guozheng Kang,et al.  On the fatigue performance and residual life of intercity railway axles with inside axle boxes , 2018, Engineering Fracture Mechanics.

[54]  Yung-Li Lee,et al.  Fatigue predictions for components under biaxial reversed loading , 1991 .

[55]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[56]  David Taylor,et al.  The Theory of Critical Distances: A New Perspective in Fracture Mechanics , 2010 .

[57]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[58]  Yao Weixing,et al.  Stress field intensity approach for predicting fatigue life , 1993 .

[59]  Jiang Fan,et al.  Probabilistic damage tolerance analysis on turbine disk through experimental data , 2012 .

[60]  Shun-Peng Zhu,et al.  A modified strain energy density exhaustion model for creep–fatigue life prediction , 2016 .

[61]  Dianyin Hu,et al.  Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling , 2016 .