Noisy Channel Coding via Privacy Amplification and Information Reconciliation

We show that optimal protocols for noisy channel coding of public or private information over either classical or quantum channels can be directly constructed from two more primitive information-theoretic protocols: privacy amplification and information reconciliation, also known as data compression with side information. We do this in the one-shot scenario of structureless resources, and formulate our results in terms of the smooth min- and max-entropy. In the context of classical information theory, this shows that essentially all two-terminal protocols can be reduced to these two primitives, which are in turn governed by the smooth min- and max-entropies, respectively. In the context of quantum information theory, the recently-established duality of these two protocols means essentially all two-terminal protocols can be constructed using just a single primitive. As an illustration, we show how optimal noisy channel coding protocols can be constructed solely from privacy amplification.

[1]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[2]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[3]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[4]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[5]  Xiao Ma,et al.  Matched information rate codes for binary ISI channels , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[7]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[9]  Joseph M Renes,et al.  Structured codes improve the Bennett-Brassard-84 quantum key rate. , 2008, Physical review letters.

[10]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[11]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[12]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[13]  W. Marsden I and J , 2012 .

[14]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[15]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[16]  N. Datta,et al.  Quantum Coding Theorems for Arbitrary Sources, Channels and Entanglement Resources , 2006, quant-ph/0610003.

[17]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[18]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[19]  Joseph M. Renes,et al.  Duality of privacy amplification against quantum adversaries and data compression with quantum side information , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[21]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[22]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[23]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[24]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[25]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[26]  Robert König,et al.  Sampling of Min-Entropy Relative to Quantum Knowledge , 2007, IEEE Transactions on Information Theory.

[27]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[28]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[29]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[30]  Renato Renner,et al.  The Single-Serving Channel Capacity , 2006, 2006 IEEE International Symposium on Information Theory.

[31]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .