Genus zero surface conformal mapping and its application to brain surface mapping.

We developed a general method for global conformal parameterizations based on the structure of the cohomology group of holomorphic one-forms for surfaces with or without boundaries (Gu and Yau, 2002), (Gu and Yau, 2003). For genus zero surfaces, our algorithm can find a unique mapping between any two genus zero manifolds by minimizing the harmonic energy of the map. In this paper, we apply the algorithm to the cortical surface matching problem. We use a mesh structure to represent the brain surface. Further constraints are added to ensure that the conformal map is unique. Empirical tests on magnetic resonance imaging (MRI) data show that the mappings preserve angular relationships, are stable in MRIs acquired at different times, and are robust to differences in data triangulation, and resolution. Compared with other brain surface conformal mapping algorithms, our algorithm is more stable and has good extensibility.

[1]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[2]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Guido Gerig,et al.  Surface parametrization and shape description , 1992, Other Conferences.

[4]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[5]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[6]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[7]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[8]  S. Yau,et al.  Lectures on Harmonic Maps , 1997 .

[9]  Michael I. Miller,et al.  On The Geometry and Shape of Brain Sub-Manifolds , 1997, Int. J. Pattern Recognit. Artif. Intell..

[10]  Hiromasa Suzuki,et al.  Three-dimensional geometric metamorphosis based on harmonic maps , 1998, The Visual Computer.

[11]  Muge M. Bakircioglu,et al.  Curve matching on brain surfaces using frenet distances , 1998, Human brain mapping.

[12]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[13]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[14]  Kenneth Stephenson The approximation of conformal structures via circle packing , 1999 .

[15]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[16]  Ron Kikinis,et al.  Nondistorting flattening maps and the 3-D visualization of colon CT images , 2000, IEEE Transactions on Medical Imaging.

[17]  Philip L. Bowers,et al.  Coordinate systems for conformal cerebellar flat maps , 2000, NeuroImage.

[18]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[19]  Allen Tannenbaum,et al.  Correction to "Nondistorting flattened maps and the 3-D visualization of colon CT images" , 2000 .

[20]  Richard M. Leahy,et al.  Optimization method for creating semi-isometric flat maps of the cerebral cortex , 2000, Medical Imaging: Image Processing.

[21]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[22]  Paul M. Thompson,et al.  Detecting Disease-Specific Patterns of Brain Structure Using Cortical Pattern Matching and a Population-Based Probabilistic Brain Atlas , 2001, IPMI.

[23]  Jerry L. Prince,et al.  Hemispherical map for the human brain cortex , 2001, SPIE Medical Imaging.

[24]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[25]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[26]  S. Osher,et al.  Solving variational problems and partial differential equations mapping into general target manifolds , 2004 .

[27]  Shing-Tung Yau,et al.  Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..

[28]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[29]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[30]  Paul M. Thompson,et al.  A framework for computational anatomy , 2002 .

[31]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[32]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[33]  Jerry L. Prince,et al.  Mapping techniques for aligning sulci across multiple brains. , 2004 .