Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces

We prove that input-to-state stability (ISS) of nonlinear systems over Banach spaces is equivalent to existence of a coercive Lipschitz continuous ISS Lyapunov function for this system. For linear infinite-dimensional systems, we show that ISS is equivalent to existence of a non-coercive ISS Lyapunov function and provide two simpler constructions of coercive and non-coercive ISS Lyapunov functions for input-to-state stable linear systems.

[1]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[2]  Fabian R. Wirth,et al.  A note on input-to-state stability of linear and bilinear infinite-dimensional systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[3]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[4]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[5]  Kevin Fiedler,et al.  Robust Nonlinear Control Design State Space And Lyapunov Techniques , 2016 .

[6]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[7]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[8]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[9]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[10]  Frédéric Mazenc,et al.  ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws , 2012, Mathematics of Control, Signals, and Systems.

[11]  Fabian R. Wirth,et al.  Non-coercive Lyapunov functions for infinite-dimensional systems , 2016, Journal of Differential Equations.

[12]  Viorel Barbu,et al.  Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .

[13]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[14]  Iasson Karafyllis,et al.  Stability and Stabilization of Nonlinear Systems , 2011 .

[15]  Vincent Andrieu,et al.  A unifying point of view on output feedback designs for global asymptotic stabilization , 2009, Autom..

[16]  Iasson Karafyllis,et al.  ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs , 2015, IEEE Transactions on Automatic Control.

[17]  Fabian R. Wirth,et al.  Characterizations of Input-to-State Stability for Infinite-Dimensional Systems , 2017, IEEE Transactions on Automatic Control.

[18]  Sergey Dashkovskiy,et al.  Input-to-state stability of infinite-dimensional control systems , 2012, Mathematics of Control, Signals, and Systems.

[19]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[20]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[21]  Mohamadreza Ahmadi,et al.  Dissipation inequalities for the analysis of a class of PDEs , 2016, Autom..

[22]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[23]  Hiroshi Ito,et al.  Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions , 2014, 1406.2458.

[24]  Andrii Mironchenko,et al.  Global converse Lyapunov theorems for infinite-dimensional systems , 2016 .

[25]  Iasson Karafyllis,et al.  ISS In Different Norms For 1-D Parabolic Pdes With Boundary Disturbances , 2016, SIAM J. Control. Optim..

[26]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[27]  A. N. Godunov,et al.  Peano's theorem in Banach spaces , 1975 .

[28]  Miroslav Krstic,et al.  Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration , 2000, IEEE Trans. Autom. Control..

[29]  F. Mazenc,et al.  Strict Lyapunov functions for semilinear parabolic partial differential equations , 2011 .

[30]  Jonathan R. Partington,et al.  Infinite-Dimensional Input-to-State Stability and Orlicz Spaces , 2016, SIAM J. Control. Optim..

[31]  Fabian R. Wirth,et al.  Small gain theorems for large scale systems and construction of ISS Lyapunov functions , 2009, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[32]  Andrii Mironchenko Local input-to-state stability: Characterizations and counterexamples , 2016, Syst. Control. Lett..

[33]  Hiroshi Ito,et al.  Construction of Lyapunov Functions for Interconnected Parabolic Systems: An iISS Approach , 2014, SIAM J. Control. Optim..