Fuzzy Inference System for fault detection in internal combustion engines in Thermoelectric Power Generating Plants

In this work, an approach to implement a simplified fuzzy inference model for monitoring the conditions of workings of power generators through the pressure values ​​of combustion temperature and engine water pressure is displayed. The model helps the supervisory system, through real-time evaluation of the operating conditions of the engine in percentage rates. The application of tools based on computational intelligence, have shown efficiency in various areas of industrial engineering.

[1]  S. Ushakumari,et al.  Failure forecast engine for power plant expert system shell , 2012, 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT).

[2]  Hannu T. Toivonen,et al.  Model-based torsional vibration control of internal combustion engines , 2008 .

[3]  Brazil. Departamento Nacional de Desenvolvimento Energético,et al.  Brazilian energy balance , 1996 .

[4]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[5]  E.N. Sanchez,et al.  Fault detection in fossil electric power plant via neural networks , 2004, Proceedings World Automation Congress, 2004..

[6]  Joseph G. Brown,et al.  A Note on Fuzzy Sets , 1971, Inf. Control..

[7]  Gabriel Pupin Chenci,et al.  Uma Introdução á Lógica Fuzzy , 2011 .

[9]  Aldo de Luca,et al.  Fuzzy Sets and Decision Theory , 1973, Inf. Control..

[10]  Manoel Henrique Reis Nascimento,et al.  Pre-Dispatch of Load in Thermoelectric Power Plants Considering Maintenance Management Using Fuzzy Logic , 2018, IEEE Access.

[11]  Inácio Moraes da Silva Gás natural: a sua utilização na geração de energia elétrica no Brasil , 2010 .

[12]  C. A. Platero,et al.  Combustion problem identification based on electric power output oscillation assessment for Diesel-Engine driven generators , 2017, 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED).

[13]  Francisco J. Ruiz-Sanchez,et al.  Fault detection and diagnosis of complex engineering systems based on a NNARX multi model applied to a fossil fuel electric power plant , 2017, 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC).

[14]  Danilo Florentino Pereira,et al.  Sistema fuzzy para estimativa do bem-estar de matrizes pesadas , 2008 .

[15]  Hsinchun Chen,et al.  Identifying SCADA vulnerabilities using passive and active vulnerability assessment techniques , 2016, 2016 IEEE Conference on Intelligence and Security Informatics (ISI).

[16]  Ricardo Ribeiro Gudwin,et al.  MODELAGEM. CONTROLE, SISTEMAS E LÓGICA FUZZY , 1994 .

[17]  M. Nascimento,et al.  Inventory control applying sales demand prevision based on fuzzy inference system , 2017 .