Roadmap on superoscillations

Superoscillations are band-limited functions with the counterintuitive property that they can vary arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals. Modern studies originated in quantum theory, but there were anticipations in radar and optics. The mathematical understanding—still being explored—recognises that functions are extremely small where they superoscillate; this has implications for information theory. Applications to optical vortices, sub-wavelength microscopy and related areas of nanoscience are now moving from the theoretical and the demonstrative to the practical. This Roadmap surveys all these areas, providing background, current research, and anticipating future developments.

[1]  Changtao Wang,et al.  Achromatic Broadband Super‐Resolution Imaging by Super‐Oscillatory Metasurface , 2018, Laser & Photonics Reviews.

[2]  Xiaoliang Ma,et al.  Revisitation of Extraordinary Young’s Interference: from Catenary Optical Fields to Spin–Orbit Interaction in Metasurfaces , 2018, ACS Photonics.

[3]  Jinghua Teng,et al.  Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications , 2018, Advanced materials.

[4]  N. Zheludev,et al.  “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields , 2018, Light, science & applications.

[5]  N. Zheludev,et al.  Far-field Metamaterial Superlens , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[6]  G. Liang,et al.  Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave. , 2018, Optics express.

[7]  S. Mahajan,et al.  Optimising superoscillatory spots for far-field super-resolution imaging. , 2018, Optics express.

[8]  Xian-shu Luo Subwavelength Optical Engineering with Metasurface Waves , 2018 .

[9]  D. Struppa,et al.  Schrödinger evolution of superoscillations under different potentials , 2018 .

[10]  Daniele C. Struppa,et al.  Continuity of some operators arising in the theory of superoscillations , 2018 .

[11]  Y. Aharonov,et al.  Classes of superoscillating functions , 2018 .

[12]  A. Arie,et al.  Experimental realization of structured super-oscillatory pulses. , 2018, Optics express.

[13]  Achim Kempf,et al.  Four aspects of superoscillations , 2018, Quantum Studies: Mathematics and Foundations.

[14]  Y. Zhang,et al.  Three-dimensional supercritical resolved light-induced magnetic holography , 2017, Science Advances.

[15]  Minseok Kim,et al.  Superresolution far-field imaging of complex objects using reduced superoscillating ripples , 2017 .

[16]  D. Struppa,et al.  Evolution of superoscillations for Schrödinger equation in a uniform magnetic field , 2017 .

[17]  A. Bahabad,et al.  Axial sub-Fourier focusing of an optical beam. , 2017, Optics letters.

[18]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[19]  Heather A. Harrington,et al.  Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology , 2017, Biophysical journal.

[20]  J. Teng,et al.  Reconfigurable phase-change photomask for grayscale photolithography , 2017 .

[21]  Sam Morley-Short,et al.  Representing fractals by superoscillations , 2017 .

[22]  George V. Eleftheriades,et al.  Broadband superoscillation brings a wave into perfect three-dimensional focus , 2017 .

[23]  M. Hong,et al.  Breaking the diffraction limit in far field by planar metalens , 2017 .

[24]  Jinghua Teng,et al.  A Supercritical Lens Optical Label‐Free Microscopy: Sub‐Diffraction Resolution and Ultra‐Long Working Distance , 2017, Advanced materials.

[25]  Nikolay I Zheludev,et al.  Achromatic super-oscillatory lenses with sub-wavelength focusing , 2017, Light: Science & Applications.

[26]  Alon Bahabad,et al.  Super defocusing of light by optical sub-oscillations , 2017, 1701.04755.

[27]  Michael V Berry,et al.  Suppression of superoscillations by noise , 2017 .

[28]  Ady Arie,et al.  Particle manipulation beyond the diffraction limit using structured super-oscillating light beams , 2016, Light: Science & Applications.

[29]  S. Popescu,et al.  On conservation laws in quantum mechanics , 2016, Proceedings of the National Academy of Sciences.

[30]  Achim Kempf,et al.  New methods for creating superoscillations , 2016, 1608.03121.

[31]  F. Nori,et al.  Anomalous time delays and quantum weak measurements in optical micro-resonators , 2016, Nature Communications.

[32]  A. Bahabad,et al.  Breaking the temporal resolution limit by superoscillating optical beats , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[33]  F. Nori,et al.  Spin-Hall effect and circular birefringence of a uniaxial crystal plate , 2016, 1605.08505.

[34]  A. Bahabad,et al.  Super-Oscillating Airy Pattern , 2016 .

[35]  A. Arie,et al.  Superoscillating electron wave functions with subdiffraction spots , 2016, 1604.05929.

[36]  J. Masajada,et al.  Analytical model of the optical vortex microscope. , 2016, Applied optics.

[37]  Xiaoliang Ma,et al.  Achromatic flat optical components via compensation between structure and material dispersions , 2016, Scientific Reports.

[38]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[39]  D. C. Struppa,et al.  The mathematics of superoscillations , 2015, 1511.01938.

[40]  Changtao Wang,et al.  Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing , 2015 .

[41]  Achim Kempf,et al.  Driving quantum systems with superoscillations , 2015, Journal of Mathematical Physics.

[42]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[43]  Christophe Couteau,et al.  Quantum super-oscillation of a single photon , 2015, Light: Science & Applications.

[44]  Xiaoliang Ma,et al.  Catenary optics for achromatic generation of perfect optical angular momentum , 2015, Science Advances.

[45]  Achim Kempf,et al.  Locality and entanglement in bandlimited quantum field theory , 2015, 1508.05953.

[46]  Moshe Schwartz,et al.  Yield statistics of interpolated superoscillations , 2015, 1507.07544.

[47]  A. Arie,et al.  Super-narrow frequency conversion , 2015 .

[48]  Minghui Hong,et al.  Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light , 2015, Scientific Reports.

[49]  Jinghua Teng,et al.  Ultrahigh-capacity non-periodic photon sieves operating in visible light , 2015, Nature Communications.

[50]  O. Mücke,et al.  Coherent pulse synthesis: towards sub‐cycle optical waveforms , 2015 .

[51]  George V. Eleftheriades,et al.  Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves , 2015, Scientific Reports.

[52]  Nikolay I. Zheludev,et al.  Super-Oscillatory Imaging of Nanoparticle Interactions with Neurons , 2015 .

[53]  A. Bahabad,et al.  Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium. , 2014, Optics express.

[54]  D. Struppa,et al.  Quantum harmonic oscillator with superoscillating initial datum , 2014, 1411.4112.

[55]  Nikolay I. Zheludev,et al.  Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths , 2014, Scientific Reports.

[56]  Zhongquan Wen,et al.  Super-oscillation focusing lens based on continuous amplitude and binary phase modulation. , 2014, Optics express.

[57]  Nikolay I. Zheludev,et al.  Point spread function of the optical needle super-oscillatory lens , 2014 .

[58]  N. Zheludev,et al.  Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution. , 2014, Optics express.

[59]  Jinghua Teng,et al.  Optimization‐free superoscillatory lens using phase and amplitude masks , 2014 .

[60]  A. Vinogradov,et al.  Abrupt Rabi oscillations in a superoscillating electric field. , 2013, Optics letters.

[61]  Nikolay I. Zheludev,et al.  Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging , 2013 .

[62]  A. Aiello,et al.  Goos–Hänchen and Imbert–Fedorov shifts from a quantum-mechanical perspective , 2013, 1307.6057.

[63]  George V. Eleftheriades,et al.  An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit , 2013, Scientific Reports.

[64]  D. Struppa,et al.  On the Cauchy problem for the Schrödinger equation with superoscillatory initial data , 2013 .

[65]  Nikolay I. Zheludev,et al.  Super-oscillatory optical needle , 2013 .

[66]  M. Dennis,et al.  Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts. , 2012, Physical review letters.

[67]  Moshe Schwartz,et al.  Yield-Optimized Superoscillations , 2012, IEEE Transactions on Signal Processing.

[68]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[69]  T. Ebbesen,et al.  Weak measurements of light chirality with a plasmonic slit. , 2012, Physical review letters.

[70]  Mark R. Dennis,et al.  The analogy between optical beam shifts and quantum weak measurements , 2012, 1204.0327.

[71]  Daniele C. Struppa,et al.  Some mathematical properties of superoscillations , 2011 .

[72]  G. Eleftheriades,et al.  Sub-Wavelength Focusing at the Multi-Wavelength Range Using Superoscillations: An Experimental Demonstration , 2011, IEEE Transactions on Antennas and Propagation.

[73]  N. Zheludev,et al.  A novel 3D nanolens for sub-wavelength focusing by self-aligned nanolithography , 2010 .

[74]  J. P. Woerdman,et al.  How orbital angular momentum affects beam shifts in optical reflection , 2010, 1003.0885.

[75]  W. H. Kraan,et al.  Observation of the Goos-Hänchen shift with neutrons. , 2010, Physical review letters.

[76]  H. Wolter TRANSLATION: Concerning the path of light upon total reflection , 2009 .

[77]  Mark R. Dennis,et al.  Natural superoscillations in monochromatic waves in D dimensions , 2009 .

[78]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[79]  K. Bliokh,et al.  Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams. , 2008, Optics letters.

[80]  Mark R. Dennis,et al.  Superoscillation in speckle patterns. , 2008, Optics letters.

[81]  N. Zheludev,et al.  Nanohole array as a lens. , 2008, Nano letters.

[82]  N. Zheludev What diffraction limit? , 2008, Nature materials.

[83]  J. P. Woerdman,et al.  Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. , 2008, Optics letters.

[84]  P. Kwiat,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[85]  Nikolay I. Zheludev,et al.  Optical super-resolution through super-oscillations , 2007 .

[86]  N. Zheludev,et al.  Focusing of light by a nanohole array , 2006, physics/0611056.

[87]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[88]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[89]  Qiwen Zhan,et al.  Three-dimensional focus shaping with cylindrical vector beams , 2006 .

[90]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[91]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[92]  Vidal F. Canales,et al.  Focusing properties of annular binary phase filters , 2004 .

[93]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[94]  Paulo Jorge S. G. Ferreira,et al.  The energy expense of superoscillations , 2002, 2002 11th European Signal Processing Conference.

[95]  V. G. Fedoseyev Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam , 2001 .

[96]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[97]  Achim Kempf,et al.  Black Holes, Bandwidths and Beethoven , 1999, gr-qc/9907084.

[98]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[99]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[100]  J. Anandan,et al.  Quantum Coherenece and Reality, In Celebration of the 60th Birthday of Yakir Aharonov , 1995 .

[101]  Michael V Berry,et al.  Evanescent and real waves in quantum billiards and Gaussian beams , 1994 .

[102]  Vaidman,et al.  Superpositions of time evolutions of a quantum system and a quantum time-translation machine. , 1990, Physical review letters.

[103]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[104]  W H Lee,et al.  Binary computer-generated holograms. , 1979, Applied optics.

[105]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[106]  C. Imbert,et al.  Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam , 1972 .

[107]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[108]  G. Toraldo di Francia,et al.  Super-gain antennas and optical resolving power , 1952 .

[109]  Uang,et al.  Optimising superoscillatory spots for far-field super-resolution imaging , 2018 .

[110]  M. Dennis,et al.  Beam shifts for pairs of plane waves , 2013 .

[111]  F. Fedorov To the theory of total reflection , 2013 .

[112]  A. Aiello Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective , 2012 .

[113]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[114]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[115]  S. Schelkunoff A mathematical theory of linear arrays , 1943 .