Monolayer Transition Metal Dichalcogenides as Light Sources

Reducing the dimensions of materials is one of the key approaches to discovering novel optical phenomena. The recent emergence of 2D transition metal dichalcogenides (TMDCs) has provided a promising platform for exploring new optoelectronic device applications, with their tunable electronic properties, structural controllability, and unique spin valley-coupled systems. This progress report provides an overview of recent advances in TMDC-based light-emitting devices discussed from several aspects in terms of device concepts, material designs, device fabrication, and their diverse functionalities. First, the advantages of TMDCs used in light-emitting devices and their possible functionalities are presented. Second, conventional approaches for fabricating TMDC light-emitting devices are emphasized, followed by introducing a newly established, versatile method for generating light emission in TMDCs. Third, current growing technologies for heterostructure fabrication, in which distinct TMDCs are vertically stacked or laterally stitched, are explained as a possible means for designing high-performance light-emitting devices. Finally, utilizing the topological features of TMDCs, the challenges for controlling circularly polarized light emission and its device applications are discussed from both theoretical and experimental points of view.

[1]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[2]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[3]  Lain-Jong Li,et al.  Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics , 2013 .

[4]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[5]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[6]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[7]  Lain-Jong Li,et al.  Flexible and stretchable thin-film transistors based on molybdenum disulphide. , 2014, Physical chemistry chemical physics : PCCP.

[8]  L. Chu,et al.  Efficient Carrier-to-Exciton Conversion in Field Emission Tunnel Diodes Based on MIS-Type van der Waals Heterostack. , 2017, Nano letters.

[9]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[10]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[11]  K. Novoselov Graphene: mind the gap. , 2007, Nature materials.

[12]  Kaustav Banerjee,et al.  Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. , 2016, Nature nanotechnology.

[13]  Valley light-emitting transistor , 2014 .

[14]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[15]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[16]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[17]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[18]  Loh Kian Ping,et al.  Exciton-plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles , 2016, 1601.05573.

[19]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[20]  Helmuth Berger,et al.  Mono- and bilayer WS2 light-emitting transistors. , 2014, Nano letters.

[21]  A. Morpurgo,et al.  Electroluminescence from indirect band gap semiconductor ReS2 , 2016, 1610.00895.

[22]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[23]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[24]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[25]  C. W. J. Beenakker,et al.  Valley filter and valley valve in graphene , 2007 .

[26]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[27]  D. Costanzo,et al.  Gate-induced superconductivity in atomically thin MoS2 crystals. , 2015, Nature nanotechnology.

[28]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[29]  Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS2 films , 2014, 1401.5729.

[30]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[31]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[32]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[33]  Zhipei Sun Optical modulators with two-dimensional layered materials , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[34]  Spin-Valve Effect in NiFe/MoS2/NiFe Junctions. , 2015, Nano letters.

[35]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[36]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[37]  Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS₂. , 2015, Nano letters.

[38]  H. Amano,et al.  P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) , 1989 .

[39]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[40]  M. Rohlfing,et al.  Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T'-ReSe2. , 2017, Nano letters.

[41]  Andras Kis,et al.  Light Generation and Harvesting in a van der Waals Heterostructure , 2014, ACS nano.

[42]  J. Miyazaki,et al.  Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating , 2015, Scientific Reports.

[43]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[44]  Yu Kobayashi,et al.  Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys , 2015, Nano Research.

[45]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[46]  Zafer Mutlu,et al.  Fundamentals of lateral and vertical heterojunctions of atomically thin materials. , 2016, Nanoscale.

[47]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[48]  Timur K. Kim,et al.  Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor , 2014, Nature Physics.

[49]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[50]  Takahiro Yamamoto,et al.  Valley photothermoelectric effects in transition-metal dichalcogenides , 2014 .

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  J. Shan,et al.  Valley magnetoelectricity in single-layer MoS2. , 2017, Nature materials.

[53]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[54]  M. Atatüre,et al.  Atomically thin quantum light-emitting diodes , 2016, Nature Communications.

[55]  M. Eginligil,et al.  Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. , 2015, ACS nano.

[56]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[57]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[58]  Saroj P. Dash,et al.  Electrical gate control of spin current in van der Waals heterostructures at room temperature , 2017, Nature Communications.

[59]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[60]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[61]  Y. Iwasa,et al.  Potential Profile of Stabilized Field-Induced Lateral p-n Junction in Transition-Metal Dichalcogenides. , 2017, ACS nano.

[62]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[63]  P. Ajayan,et al.  Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures , 2016, Nature Communications.

[64]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[65]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[66]  Kenji Watanabe,et al.  Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction , 2016, Scientific Reports.

[67]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[68]  Yoshihiro Iwasa,et al.  Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. , 2015, ACS nano.

[69]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature Nanotechnology.

[70]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[71]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[72]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[73]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[74]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[75]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[76]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[77]  Xiaodong Xu,et al.  Single Defect Light-Emitting Diode in a van der Waals Heterostructure. , 2016, Nano letters.

[78]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[79]  Yasuharu Nakamura,et al.  Superconductivity protected by spin-valley locking in ion-gated MoS2 , 2015, 1506.04146.

[80]  Jun Gao Polymer light-emitting electrochemical cells—Recent advances and future trends , 2018 .

[81]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[82]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[83]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[84]  A. Javey,et al.  Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS2 by Fluoropolymer Encapsulation and Superacid Treatment. , 2017, ACS nano.

[85]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[86]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[87]  Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions. , 2014, Nano letters.

[88]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[89]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[90]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[91]  K. Novoselov,et al.  Resonant tunnelling and negative differential conductance in graphene transistors , 2013, Nature Communications.

[92]  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. , 2014, Nature communications.

[93]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[94]  William R. Silveira,et al.  Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. , 2007, Nature materials.

[95]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[96]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[97]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[98]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[99]  Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide , 2015, Nature communications.

[100]  Ming-Cheng Chen,et al.  Single quantum emitters in monolayer semiconductors. , 2015, Nature nanotechnology.

[101]  Lain-Jong Li,et al.  Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers , 2014, Science.

[102]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[103]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[104]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[105]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells:  In Situ Formation of a Light-Emitting p-n Junction. , 1996, Journal of the American Chemical Society.

[106]  Masashi Kawasaki,et al.  Field-Induced Superconductivity in Electric Double Layer Transistors , 2014 .

[107]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[108]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[109]  Sefaattin Tongay,et al.  Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays. , 2015, Nano letters.

[110]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[111]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[112]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[113]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[114]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[115]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[116]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[117]  C. Soci,et al.  Dichroic spin–valley photocurrent in monolayer molybdenum disulphide , 2015, Nature Communications.

[118]  Andras Kis,et al.  Valley Zeeman effect in elementary optical excitations of monolayer WSe2 , 2014, Nature Physics.

[119]  Xiaodong Xu,et al.  Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. , 2014, Physical review letters.

[120]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[121]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[122]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[123]  Sefaattin Tongay,et al.  Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling , 2014, Nature Communications.

[124]  J. Warner,et al.  Biexciton Formation in Bilayer Tungsten Disulfide. , 2016, ACS nano.

[125]  Andras Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[126]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[127]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[128]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[129]  A. Majumdar,et al.  Nanocavity Integrated van der Waals Heterostructure Light-Emitting Tunneling Diode. , 2017, Nano letters.

[130]  Peng Li,et al.  Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. , 2016, ACS nano.

[131]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[132]  H. Takagi,et al.  Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2 , 2012 .

[133]  Masaki Nakano,et al.  Endeavor of Iontronics: From Fundamentals to Applications of Ion‐Controlled Electronics , 2017, Advanced materials.

[134]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[135]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[136]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[137]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[138]  Lain‐Jong Li,et al.  Highly Flexible and High‐Performance Complementary Inverters of Large‐Area Transition Metal Dichalcogenide Monolayers , 2016, Advanced materials.

[139]  Lain‐Jong Li,et al.  Self‐Aligned and Scalable Growth of Monolayer WSe2–MoS2 Lateral Heterojunctions , 2018 .

[140]  Y. Iwasa,et al.  Exciton Hall effect in monolayer MoS2. , 2017, Nature materials.

[141]  Ting Yu,et al.  Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. , 2016, Nano letters.

[142]  Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene , 2015, 1501.04776.

[143]  A Gholinia,et al.  WSe₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. , 2015, Nano letters.

[144]  E. Wang,et al.  MoS_2 as an ideal material for valleytronics: valley-selective circular dichroism and valley Hall effect , 2011, 1112.4013.

[145]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[146]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[147]  Xiang Zhang,et al.  Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. , 2016, Nature nanotechnology.

[148]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[149]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[150]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[151]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[152]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[153]  D. Costanzo,et al.  Electrostatically induced superconductivity at the surface of WS₂. , 2015, Nano letters.

[154]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[155]  Lain‐Jong Li,et al.  A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers , 2017, Advanced materials.

[156]  M. Shayegan,et al.  Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. , 2002, Physical review letters.

[157]  Piotr Laczkowski,et al.  Electrical spin injection and detection in molybdenum disulfide multilayer channel , 2017, Nature Communications.

[158]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[159]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[160]  Aaron M. Jones,et al.  Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 , 2013, Nature Physics.

[161]  Jinsong Xu,et al.  Opto-Valleytronic Spin Injection in Monolayer MoS2/Few-Layer Graphene Hybrid Spin Valves. , 2017, Nano letters.

[162]  Amritesh Rai,et al.  High-Mobility Holes in Dual-Gated WSe2 Field-Effect Transistors. , 2015, ACS nano.

[163]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[164]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .

[165]  Chih-Kang Shih,et al.  Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions , 2018, Nature Nanotechnology.

[166]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[167]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[168]  Y. Iwasa,et al.  High circular polarization in electroluminescence from MoSe2 , 2016 .

[169]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[170]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[171]  C. Soci,et al.  Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers , 2017, Nature Communications.

[172]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[173]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[174]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[175]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[176]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[177]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[178]  Zuocheng Zhang,et al.  Direct observation of the layer-dependent electronic structure in phosphorene. , 2016, Nature nanotechnology.

[179]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[180]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[181]  Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals , 2016, 1611.01589.

[182]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[183]  D. Bunandar,et al.  A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. , 2017, Nature nanotechnology.

[184]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[185]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[186]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[187]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[188]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[189]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[190]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[191]  J. Shan,et al.  Electrical control of the valley Hall effect in bilayer MoS2 transistors. , 2015, Nature nanotechnology.

[192]  E. Ortí,et al.  Light-emitting electrochemical cells: recent progress and future prospects , 2014 .

[193]  S. Hotta,et al.  Ambipolar Organic Single‐Crystal Transistors Based on Ion Gels , 2012, Advanced materials.

[194]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[195]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[196]  Martijn Kemerink,et al.  The dynamic organic p-n junction. , 2009, Nature materials.

[197]  Ashish Arora,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[198]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[199]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[200]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[201]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[202]  G. Steele,et al.  Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. , 2014, Nano letters.

[203]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[204]  Exciton-related electroluminescence from monolayer MoS2 , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[205]  Timothy C. Berkelbach,et al.  Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. , 2015, Nano letters.