Simulation and compensation of thermal errors of machine tools

The following thesis deals with the simulation and compensation of thermal errors on machine tools using the finite element method (FEM). Whilst FEM has become increasingly important in analyzing the static behavior, its usage for thermal problems has so far been limited. This is because the thermal error on machine tools depends on a wide variety of effects, leading to a complexity that is hard to comprehend in its entirety. The first problem is that machine tools consist of a large variety of components that influence the thermal behavior and as such it is necessary to understand the physics of every component. A variety of models are created for these components. These models are founded on known parameters and render further measurements for parameter identification unnecessary. This is of utmost importance during the design phase, where no prototype exists that can be used for measuring. Still it is desirable to perform reliable simulations in order to determine the quality of the design. Common components are rolling bodies that are used in bearing, guideways and ball screws. Appropriate models are shown that consider the load and velocity of the rolling bodies in order to determine their friction loss and heat conductance. Feed drives and auxiliary components can also be found on every machine tool and hence models are derived that can be used to study their effect. Even if the physics for these components are known it still is a difficult task to implement these in a FEM software. Some tasks that are connected to this are the implementation of the equations for the models in the FEM software, the knowledge of the loads and velocities and how to consider the positioning of the axes. A simulation software, called Virtual Machine Prototype (VMP) was developed in order to remedy the aforementioned problems. It is specifically design to simulate machine tools and to assist designers in creating more accurate and better machine tools. VMP consists of a multibody dynamics and thermomechanical FE code. Multibody dynamics are included to derive the loads on the components based on the NC path. The thermomechanical FE code automatically updates the model of the machine tool according to its current state and position. The next step is to ensure that the simulation of the thermal problem can be performed in a matter of minutes. This is contrary to the common knowledge that the simulation of thermal problems can take many hours and even days. Whilst many researchers try to reduce the thermal system of equations, it will be shown that this is not necessary. By analyzing the physics behind thermal problems it is possible to write the problem in such a way that the solution takes little time. Together with a reduction of the mechanical system of equations it is even possible to use FEM for the compensation of thermal errors on a machine tool. VMP will be connected to the CNC of a machine tool in order to compensate the thermal error in the whole working

[1]  Chi-Wei Lin,et al.  An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation , 2003 .

[2]  Eiji Shamoto,et al.  Analysis of Thermal Deformation of an Ultraprecision Air Spindle System , 1998 .

[3]  Germar Müller,et al.  Grundlagen Elektrischer Maschinen: Müller/Grundlagen Elektrischer Maschinen , 2014 .

[4]  D. V. Griffiths,et al.  Programming the finite element method , 1982 .

[5]  W. Modrzycki,et al.  Precise modelling of HSC machine tool thermal behaviour , 2007 .

[6]  Long Chen FINITE ELEMENT METHOD , 2013 .

[7]  Paul Morantz,et al.  Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX , 2010, Astronomical Telescopes + Instrumentation.

[8]  Uwe Heisel,et al.  Thermography-Based Investigation into Thermally Induced Positioning Errors of Feed Drives By Example of a Ball Screw , 2006 .

[9]  Günter Spur,et al.  Thermal Behaviour Optimization of Machine Tools , 1988 .

[10]  Dierk Schröder,et al.  Elektrische Antriebe - Grundlagen , 2000 .

[11]  Yong Kuk Park,et al.  Measurement of spindle thermal errors in machine tool using hemispherical ball bar test , 2004 .

[12]  M. Weck,et al.  Computing the Thermal Behaviour of Machine Tools using the Finite Element Method-Possibilities and Limitations , 1976 .

[13]  Sun-Kyu Lee,et al.  Effect of thermal deformation on machine tool slide guide motion , 2003 .

[14]  K. L. Johnson Elastohydrodynamic Lubrication, SI Edition. By D. D OWSON and G. R. H IGCIINSON . Pergamon, 1977. 235 pp. £6.50 (hardback) or £3.75 (paperback). , 1978 .

[15]  Petr Krysl,et al.  A Pragmatic Introduction to the Finite Element Method for Thermal And Stress Analysis: With the Matlab Toolkit Sofea , 2006 .

[16]  O. Horejs,et al.  Thermo-Mechanical Model of Ball Screw With Non-Steady Heat Sources , 2007, 2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application.

[17]  Dong-Woo Cho,et al.  Thermal error analysis for a CNC lathe feed drive system , 1999 .

[18]  Daisuke Kono,et al.  Evaluation of modelling approaches for machine tool design , 2010 .

[19]  Hongqi Li,et al.  Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 1: Model Development , 2004 .

[20]  K. Bathe Finite-Elemente-Methoden , 1986 .

[21]  W. L. Wood Practical Time-Stepping Schemes , 1990 .

[22]  Yoshimi Ito Thermal Deformation in Machine Tools , 2010 .

[23]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 4: A Multi-Variable Closed-Loop Control System , 1999 .

[24]  Xu Min,et al.  An improved thermal model for machine tool bearings , 2007 .

[25]  Dierk Schröder,et al.  Elektrische Antriebe 2 , 1995 .

[26]  B. Hamrock Ball bearing lubrication , 1981 .

[27]  Jerzy Jedrzejewski,et al.  Hybrid Model of High Speed Machining Centre Headstock , 2004 .

[28]  Harald Neudorfer Elektrische Maschinen I , 2011, Elektrotech. Informationstechnik.

[29]  Jenq-Shyong Chen,et al.  Computer-aided accuracy enhancement for multi-axis CNC machine tool , 1995 .

[30]  G.D. Demetriades,et al.  A Real-Time Thermal Model of a Permanent-Magnet Synchronous Motor , 2010, IEEE Transactions on Power Electronics.

[31]  T. A. Harris,et al.  Rolling Bearing Analysis , 1967 .

[32]  Cheng-Hsien Wu,et al.  Thermal analysis for the feed drive system of a CNC machine center , 2003 .

[33]  Karl Gebert Ein Beitrag zur thermischen Modellbildung von schnelldrehenden Motorspindeln , 1997 .

[34]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[35]  P. A. McKeown,et al.  Reduction and compensation of thermal errors in machine tools , 1995 .

[36]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling , 1998 .

[37]  James B. Bryan,et al.  International Status of Thermal Error Research (1990) , 1990 .

[38]  Tien Mo Shih Numerical Heat Transfer , 1984 .

[39]  Jenq-Shyong Chen Fast calibration and modeling of thermally-induced machine tool errors in real machining , 1997 .

[40]  Pascal Maglie,et al.  Parallelization of design and simulation: virtual machine tools in real product development , 2012 .

[41]  Aun-Neow Poo,et al.  Error compensation in machine tools — a review: Part II: thermal errors , 2000 .

[42]  Jay F. Tu,et al.  A power flow model for high speed motorized spindles : Heat generation characterization , 2001 .

[43]  Josef Mayr,et al.  Thermal behaviour improvement of linear axis , 2011 .

[44]  Essam S Hamdi,et al.  Design of Small Electrical Machines , 1994 .

[45]  Jay F. Tu,et al.  A thermal model for high speed motorized spindles , 1999 .

[46]  Min-Yang Yang,et al.  Measurement and prediction of thermal errors of a CNC machining center using two spherical balls , 1998 .

[47]  Eckart Uhlmann,et al.  Compensation of Thermal Deformations at Machine Tools using Adaptronic CRP-Structures , 2008 .

[48]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 3: Real-Time Estimation of Heat Sources , 1999 .

[49]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[50]  Shin'ichi Warisawa,et al.  Development of an Intelligent High-Speed Machining Center , 2001 .

[51]  D. R. Turner,et al.  Lumped parameter thermal model for electrical machines of TEFC design , 1991 .

[52]  Josef Mayr,et al.  Compensation of Thermal Effects on Machine Tools using a FDEM Simulation Approach , 2009 .

[53]  Pai-Chung Tseng A real-time thermal inaccuracy compensation method on a machining centre , 1997 .

[54]  Josef Mayr,et al.  SIMULATION AND PREDICTION OF THE THERMALLY INDUCED DEFORMATIONS ON MACHNIE TOOLS CAUSED BY MOVING LINEAR AXIS USING THE FDEM SIMULATION APPROACH , 2008 .

[55]  Toshimichi Moriwaki,et al.  Improving Machining Accuracy in Turning with Use of Tool Holder Made of Super-invar , 1991 .

[56]  James B. Bryan,et al.  Shower and high-pressure oil temperature control , 1986 .

[57]  Jun Ni,et al.  Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error , 2005 .

[58]  Y. Altintas,et al.  Thermo-mechanical model of spindles , 2010 .

[59]  Rolf Finke Berechnung des dynamischen Verhaltens von Werkzeugmaschinen , 1977 .

[60]  S. Weikert,et al.  R-Test, a New Device for Accuracy Measurements on Five Axis Machine Tools , 2004 .

[61]  Narayan Srinivasa,et al.  Spindle thermal drift measurement using the laser ball bar , 1996 .

[62]  Heui-Jae Pahk,et al.  Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error , 2002 .

[63]  Christian Brecher,et al.  Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data , 2004 .

[64]  Konrad Wegener,et al.  Thermal Displacements of Rotary Axes , 2011 .

[65]  Josef Mayr,et al.  Beurteilung und Kompensation des Temperaturganges von Werkzeugmaschinen , 2009 .

[66]  Marc Hoit,et al.  A 14-Point reduced integration scheme for solid elements , 1995 .

[67]  Bernd Ponick,et al.  Grundlagen elektrischer Maschinen: MUELLER:ELEKTR.MASCH.1 O-BK , 2005 .

[68]  Andrea Cavagnino,et al.  A simplified thermal model for variable speed self cooled industrial induction motor , 2002 .

[69]  K. Kato,et al.  Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion , 1993 .

[70]  Jun Ni,et al.  Thermal error modelling for real-time error compensation , 1996 .

[71]  D.A. Staton,et al.  Determination of optimal thermal parameters for brushless permanent magnet motor design , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[72]  Jerzy Jedrzejewski,et al.  A new approach to modelling thermal behaviour of a machine tool under service conditions , 1992 .

[73]  Derek G. Ford,et al.  Machine tool thermal error reduction—an appraisal , 1999 .

[74]  J. Z. Zhu,et al.  The finite element method , 1977 .

[75]  T. Sata,et al.  Analysis of Thermal Deformation of Machine Tool Structure and Its Application , 1974 .

[76]  James B. Bryan,et al.  Order of magnitude improvement in thermal stability with use of liquid shower on a general purpose measuring machine , 1982 .

[77]  Seung-Han Yang,et al.  Statistical optimization and assessment of a thermal error model for CNC machine tools , 2002 .

[78]  O. C. Zienkiewicz,et al.  Consistent use of finite elements in time and the performance of various recurrence schemes for the heat diffusion equation , 1981 .

[79]  Phj Piet Schellekens,et al.  Modelling thermomechanical behaviour of multi-axis machine tools , 2006 .

[80]  Marnix Nuttin,et al.  Compensation of thermal deformations in machine tools with neural nets , 1995 .

[81]  Dong-Woo Cho,et al.  Real-time estimation of temperature distribution in a ball-screw system , 1997 .

[82]  Pai-Chung Tseng,et al.  A Study of High-Precision CNC Lathe Thermal Errors and Compensation , 2002 .

[83]  M A. Donmez,et al.  A Novel Cooling System to Reduce Thermally-Induced Errors of Machine Tools☆ , 2007 .

[84]  D. Howe,et al.  Thermal analysis of permanent magnet machines , 1993 .

[85]  Gunnar Kylander,et al.  Thermal Modelling of Small Cage Induction Motors , 1995 .

[86]  Masanori Ohori,et al.  Development of Concrete Machining Center and Identification of the Dynamic and the Thermal Structural Behavior , 1988 .

[87]  Jenq-Shyong Chen,et al.  A study of thermally induced machine tool errors in real cutting conditions , 1996 .

[88]  Jun Ni,et al.  Thermal error modeling for volumetric error compensation , 1992 .

[89]  K. G. Ahn,et al.  In-Process Modelling and Estimation of Thermally Induced Errors of a Machine Tool During Cutting , .

[90]  Lijiang Zeng,et al.  Real-time measurement of spindle thermal deformation using interferometers , 2000 .

[91]  Mark L. Schattenburg,et al.  Optimization and temperature mapping of an ultra-high thermal stability environmental enclosure , 2010 .

[92]  Jenq-Shyong Chen,et al.  Quick testing and modeling of thermally-induced errors of CNC machine tools , 1995 .

[93]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 5: Experimental Verification , 1999 .

[94]  Darrell W. Pepper,et al.  The Intermediate Finite Element Method: Fluid Flow and Heat Transfer Applications , 1999 .

[95]  Reimund Neugebauer,et al.  An extended procedure for convective boundary conditions on transient thermal simulations of machine tools , 2010, Prod. Eng..

[96]  W. G. Weekers Compensation of thermal errors in machine tools , 1995 .

[97]  Bernhard Bringmann Improving geometric calibration methods for multi-axis machining centers by examining error interdependencies effects , 2007 .

[98]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions , 1998 .

[99]  G. Dhondt The Finite Element Method for Three-Dimensional Thermomechanical Applications , 2004 .