Selection of initial solutions for local search in multiobjective genetic local search

In multiobjective genetic local search (MOGLS) algorithms, the local search is usually applied to all offsprings generated by genetic operations. This paper proposes an idea of selecting only good offsprings as initial solutions for the local search. Simulation results show that the proposed idea significantly improves the search ability of MOGLS algorithms.

[1]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[2]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[3]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[4]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[5]  Yuping Wang,et al.  Multiobjective programming using uniform design and genetic algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[6]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[7]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[8]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[9]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[10]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[11]  Andrzej Jaszkiewicz,et al.  Performance of Multiple Objective Evolutionary Algorithms on a Distribution System Design Problem - Computational Experiment , 2001, EMO.