High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials

Abstract We demonstrate filled CoSb3 skutterudite materials with excellent thermoelectric (TE) performance that results in one of the highest reported single stage module efficiency. The improvement in TE material performance was obtained by creating isotype n/n “bulk heterojunction” structure through assembly of novel skutterudite nanocrystals with different Yb-doping content. Combination of significant increase in carrier transport through heterojunction structure and reduction in long-range acoustic phonon transmission by two-phase mixture resulted in enhanced power factor and reduced lattice thermal conductivity. As a result, the figure-of-merit (zT) of heterojunction TE material is improved by more than 35% compared with pristine single homogeneous material. Using these improved TE materials, a high module conversion efficiency of ~9.15% was obtained when operating between 650 °C and 50 °C. This is one of the highest conversion efficiency among the practically measured single stage modules.

[1]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[2]  Jicai Feng,et al.  Simultaneous blocking of minority carrier and high energy phonon in p-type skutterudites , 2018 .

[3]  M. Kanatzidis,et al.  Panoscopic approach for high-performance Te-doped skutterudite , 2017 .

[4]  G. J. Snyder,et al.  Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device , 2017 .

[5]  Boris Kozinsky,et al.  Effects of filling in CoSb3: Local structure, band gap, and phonons from first principles , 2010 .

[6]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[7]  M. Ohtaki,et al.  High Thermoelectric Performance of Dually Doped ZnO Ceramics , 2009 .

[8]  M. Kaviany Heat Transfer Physics: Abbreviations , 2008 .

[9]  Masaaki Kikuchi,et al.  Thermoelectric Properties of Multifilled Skutterudites with La as the Main Filler , 2013, Journal of Electronic Materials.

[10]  Lidong Chen,et al.  Fabrication of a CoSb3-based thermoelectric module , 2010 .

[11]  Tian-Ran Wei,et al.  How to Measure Thermoelectric Properties Reliably , 2018, Joule.

[12]  Ctirad Uher,et al.  A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.

[13]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[14]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[15]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[16]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[17]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[18]  John C. Bean,et al.  Modulation doping in GexSi1−x/Si strained layer heterostructures , 1984 .

[19]  Jordi Arbiol,et al.  Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. , 2012, Journal of the American Chemical Society.

[20]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[21]  Gangjian Tan,et al.  High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures , 2013 .

[22]  Michihiro Ohta,et al.  Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules , 2016 .

[23]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[24]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[25]  K. Kimura,et al.  Metallic–covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants , 2014, Science and technology of advanced materials.

[26]  Masaaki Kikuchi,et al.  Performance of Skutterudite-Based Modules , 2017, Journal of Electronic Materials.

[27]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[28]  J. Heremans,et al.  Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power , 2009 .

[29]  Ryan Maloney,et al.  Conversion efficiency of skutterudite-based thermoelectric modules. , 2014, Physical chemistry chemical physics : PCCP.

[30]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[31]  Alexander A. Balandin,et al.  Effect of phonon confinement on the thermoelectric figure of merit of quantum wells , 1998 .

[32]  Hsin Wang,et al.  Determination of Thermoelectric Module Efficiency: A Survey , 2014, Journal of Electronic Materials.

[33]  H. Ohta,et al.  High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals , 2005 .

[34]  Takahiro Ochi,et al.  Development of Skutterudite Thermoelectric Materials and Modules , 2012, Journal of Electronic Materials.

[35]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[36]  Gang Chen,et al.  Enhancing the Thermoelectric Power Factor by Using Invisible Dopants , 2013, Advanced materials.

[37]  Wei Cai,et al.  Grain Boundary Engineering for Achieving High Thermoelectric Performance in n‐Type Skutterudites , 2017 .

[38]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[39]  Xiangyang Huang,et al.  Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys , 2010 .

[40]  K. Esfarjani,et al.  Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide , 2011 .

[41]  Mona Zebarjadi,et al.  Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. , 2012, Nano letters.

[42]  H. Geng,et al.  Solidification contraction-free synthesis for the Yb0.15Co4Sb12 bulk material , 2007 .

[43]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[44]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[45]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[46]  Shanyu Wang,et al.  Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12 , 2012 .

[47]  Ctirad Uher,et al.  Structural order-disorder transitions and phonon conductivity of partially filled skutterudites. , 2010, Physical review letters.

[48]  Menghan Zhou,et al.  Enhancing the thermoelectric performance of nanosized CoSb3via short-range percolation of electrically conductive WTe2 inclusions , 2016 .

[49]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[50]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[51]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[52]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[53]  Jihui Yang,et al.  High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics , 2016 .

[54]  Pengcheng Zhai,et al.  Electronic structure and transport properties of single and double filled CoSb3 with atoms Ba, Yb and In , 2011 .

[55]  A. Yamamoto,et al.  Thermoelectric properties of Ti1+xS2 prepared by CS2 sulfurization , 2012 .

[56]  T. Takeuchi Unusual Increase of Electron Thermal Conductivity Caused by a Pseudogap at the Fermi Level , 2009 .

[57]  T. Kajikawa,et al.  Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K , 2006, 2006 25th International Conference on Thermoelectrics.

[58]  C. Uher,et al.  Toward high thermoelectric performance p-type FeSb2.2Te0.8via in situ formation of InSb nanoinclusions , 2015 .

[59]  Terry Hendricks,et al.  Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules , 2011 .

[60]  K. Bartholomé,et al.  Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities , 2014, Journal of Electronic Materials.

[61]  New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X = Ge, Sn) reaching ZT > 1.3 , 2015, 1702.04498.

[62]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[63]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[64]  Lianjun Wang,et al.  Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites , 2017 .

[65]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[66]  Scott T. Huxtable,et al.  Enhanced Thermoelectric Performance of Yb-Single-Filled Skutterudite by Ultralow Thermal Conductivity , 2019, Chemistry of Materials.

[67]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[68]  Xianli Su,et al.  Superparamagnetic enhancement of thermoelectric performance , 2017, Nature.

[69]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[70]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[71]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[72]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[73]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[74]  Yi Zeng,et al.  Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance , 2015 .

[75]  G. J. Snyder,et al.  A Chemical Understanding of the Band Convergence in Thermoelectric CoSb3 Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions , 2017 .

[76]  Marco Buongiorno Nardelli,et al.  Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. , 2015, Nature materials.

[77]  P. J. Taylor,et al.  Thermoelectric quantum-dot superlattices with high ZT , 2000 .

[78]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[79]  Alex Zunger,et al.  First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds , 1994 .