Recursive resolving algorithm for multiple stereo and motion matches

In this paper, a recursive algorithm is proposed to resolve the multiple stereo and motion matches with stereo motion sequence. An extended Kalman filter is applied to filter out some of the noise and to estimate recursively both three-dimensional (3D) relative motion and the depth of objects moving in 3D space. It is assumed that the objects move independently of each other, and have a small enough size to represent them as point tokens. We derive the conditions under which ambiguity in 3D reconstruction occurs, and discuss how to escape the pitfalls with the help of motion information. Virtual objects are generated from the ambiguous multiple stereo matches, and tracked through stereo motion sequences. When any stereo match is not observed within the search range predicted by the virtually generated token, the token becomes resolved to be a false match. The innovation in the Kalman filter is used to select the best one from among the tokens sharing an observation in a sequential manner. Simulation is carried out to show the capability of resolving multiple stereo and motion matches for a synthetic stereo sequence. Experimental results with a real stereo image sequence are presented to show the effectiveness of the algorithm.

[1]  J. K. Aggarwal,et al.  3D structure reconstruction from an ego motion sequence using statistical estimation and detection theory , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[2]  Vincent Torre,et al.  The Accuracy of the Computation of Optical Flow and of the Recovery of Motion Parameters , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[4]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[5]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Johan Philip Estimation Three-Dimensional Motion of Rigid Objects from Noisy Observations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Olivier Faugeras,et al.  Maintaining representations of the environment of a mobile robot , 1988, IEEE Trans. Robotics Autom..

[8]  Narendra Ahuja,et al.  Optimal Motion and Structure Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ernst D. Dickmanns,et al.  An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles , 1990, IEEE Trans. Syst. Man Cybern..

[10]  Y. Bar-Shalom Tracking and data association , 1988 .

[11]  Gérard G. Medioni,et al.  Robust Estimation of Three-Dimensional Motion Parameters from a Sequence of Image Frames Using Regularization , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Takeo Kanade,et al.  A Multiple-Baseline Stereo , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Akio Kosaka,et al.  Vision-based motion tracking of frigid objects using prediction of uncertainties , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[14]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[15]  Allen M. Waxman,et al.  Surface Structure and Three-Dimensional Motion from Image Flow Kinematics , 1985 .

[16]  D.J. Kriegman,et al.  Stereo vision and navigation in buildings for mobile robots , 1989, IEEE Trans. Robotics Autom..

[17]  Olivier D. Faugeras,et al.  Feed-forward recovery of motion and structure from a sequence of 2D-lines matches , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[18]  Joachim Heel,et al.  Dynamic Motion Vision , 1989, Other Conferences.

[19]  R. Woodham,et al.  Determining the movement of objects from a sequence of images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[21]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[22]  Hyun Seung Yang,et al.  Fast and effective multiple moving targets tracking method for mobile robots , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[23]  Paul R. Cohen,et al.  Motion and structure estimation from stereo image sequences , 1992, IEEE Trans. Robotics Autom..

[24]  Zhengyou Zhang,et al.  Token tracking in a cluttered scene , 1994, Image Vis. Comput..

[25]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Jiang Wang,et al.  3D relative position and orientation estimation using Kalman filter for robot control , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[27]  S. Shafer,et al.  Dynamic stereo vision , 1989 .

[28]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[29]  Rama Chellappa,et al.  Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Rama Chellappa,et al.  3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[32]  Eric T. Baumgartner,et al.  An autonomous vision-based mobile robot , 1994, IEEE Trans. Autom. Control..

[33]  David Vernon,et al.  Using camera motion to estimate range for robotic parts manipulation , 1990, IEEE Trans. Robotics Autom..

[34]  Tomaso A. Poggio,et al.  On parallel stereo , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[35]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[36]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Olivier D. Faugeras,et al.  Building, Registrating, and Fusing Noisy Visual Maps , 1988, Int. J. Robotics Res..

[39]  Rama Chellappa,et al.  Statistical Analysis of Inherent Ambiguities in Recovering 3-D Motion from a Noisy Flow Field , 1992, IEEE Trans. Pattern Anal. Mach. Intell..