Retinotopic and Lateralized Processing of Spatial Frequencies in Human Visual Cortex during Scene Categorization

Using large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex.

[1]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[2]  Martial Mermillod,et al.  Effect of temporal constraints on hemispheric asymmetries during spatial frequency processing , 2006, Brain and Cognition.

[3]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[4]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[5]  R. Cusack,et al.  New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images , 2002, NeuroImage.

[6]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[7]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Scott O. Murray,et al.  Hemispheric Asymmetry in Global/Local Processing: Effects of Stimulus Position and Spatial Frequency , 2002, NeuroImage.

[9]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[10]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[11]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[12]  Joseph B. Hellige,et al.  Hemispheric differences are found in the identification, but not the detection, of low versus high spatial frequencies , 1990, Perception & psychophysics.

[13]  Shingo Yamagata,et al.  Cerebral Asymmetry of the “Top-Down” Allocation of Attention to Global and Local Features , 2000, The Journal of Neuroscience.

[14]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[15]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[16]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[17]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[18]  D. Tolhurst,et al.  Amplitude spectra of natural images , 1992 .

[19]  A. T. Smith,et al.  Spatiotemporal Frequency and Direction Sensitivities of Human Visual Areas Measured Using fMRI , 2000, NeuroImage.

[20]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[21]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[22]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[23]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  E W Yund,et al.  The role of spatial frequency in the processing of hierarchically organized stimuli , 1993, Perception & psychophysics.

[25]  B W Knight,et al.  Representation of spatial frequency and orientation in the visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Slotnick,et al.  Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory , 2006, Neuropsychologia.

[27]  R. Knight,et al.  Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions. , 1990, Journal of experimental psychology. Learning, memory, and cognition.

[28]  J. Sergent The cerebral balance of power: confrontation or cooperation? , 1982, Journal of experimental psychology. Human perception and performance.

[29]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[30]  Benoit Scherrer,et al.  Distributed Local MRF Models for Tissue and Structure Brain Segmentation , 2009, IEEE Transactions on Medical Imaging.

[31]  L. Robertson,et al.  Neuropsychological contributions to theories of part/whole organization , 1991, Cognitive Psychology.

[32]  A. Hyvärinen,et al.  Spatial frequency tuning in human retinotopic visual areas. , 2008, Journal of vision.

[33]  Cheuk Y. Tang,et al.  Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers , 2006, Neuroscience Letters.

[34]  E. Tulving,et al.  Novelty encoding networks in the human brain: positron emission tomography data. , 1994, Neuroreport.

[35]  Tetsuya Iidaka,et al.  Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI. , 2004, Brain research. Cognitive brain research.

[36]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[37]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[38]  A. Nowicka,et al.  Visual-spatial-frequency model of cerebral asymmetry: a critical survey of behavioral and electrophysiological studies. , 1996, Psychological bulletin.

[39]  Xiangmin Xu,et al.  How do functional maps in primary visual cortex vary with eccentricity? , 2007, The Journal of comparative neurology.

[40]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[41]  Poggio Gf Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. , 1972 .

[42]  J. Hegdé Time course of visual perception: Coarse-to-fine processing and beyond , 2008, Progress in Neurobiology.

[43]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[44]  S Marrett,et al.  Local and global attention are mapped retinotopically in human occipital cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[46]  S. Miyauchi,et al.  Attention-regulated activity in human primary visual cortex. , 1998, Journal of neurophysiology.

[47]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[48]  F. Kitterle,et al.  Hemispheric asymmetry in the processing of absolute versus relative spatial frequency , 1991, Brain and Cognition.

[49]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[50]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[51]  M. Buchsbaum,et al.  Hemispheric asymmetry for selective attention. , 2000, Brain research. Cognitive brain research.

[52]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  D R Badcock,et al.  Low-Frequency Filtering and the Processing of Local—Global Stimuli , 1990, Perception.

[54]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[55]  G. R Mangun,et al.  On the processing of spatial frequencies as revealed by evoked-potential source modeling , 2000, Clinical Neurophysiology.

[56]  Michael A. Silver,et al.  Persistent Hemispheric Differences in the Perceptual Selection of Spatial Frequencies , 2014, Journal of Cognitive Neuroscience.

[57]  Nathalie Guyader,et al.  Image phase or amplitude? Rapid scene categorization is an amplitude-based process. , 2004, Comptes rendus biologies.

[58]  H. Hughes,et al.  Global Precedence, Spatial Frequency Channels, and the Statistics of Natural Images , 1996, Journal of Cognitive Neuroscience.

[59]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[60]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  Carole Peyrin,et al.  Hemispheric specialization for spatial frequency processing in the analysis of natural scenes , 2003, Brain and Cognition.

[62]  Richard S. J. Frackowiak,et al.  Where in the brain does visual attention select the forest and the trees? , 1996, Nature.

[63]  L. Robertson,et al.  Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[65]  Russell A. Epstein Parahippocampal and retrosplenial contributions to human spatial navigation , 2008, Trends in Cognitive Sciences.

[66]  Antígona Martínez,et al.  Hemispneric asymmetries in global and local processing: evidence from fMRI , 1997, Neuroreport.

[67]  K Zilles,et al.  A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields , 2004, Neuroscience.

[68]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[69]  R. Turner,et al.  Optimization of 3-D MP-RAGE Sequences for Structural Brain Imaging , 2000, NeuroImage.

[70]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[71]  Louise Kauffmann,et al.  The neural bases of spatial frequency processing during scene perception , 2014, Front. Integr. Neurosci..

[72]  Monica Baciu,et al.  Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study , 2004, NeuroImage.

[73]  G. Mangun,et al.  Neural Mechanisms of Global and Local Processing: A Combined PET and ERP Study , 1998, Journal of Cognitive Neuroscience.

[74]  N. Guyader,et al.  Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization , 2011, Visual Neuroscience.

[75]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[76]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[77]  Arthur P. Ginsburg,et al.  Spatial filtering and visual form perception. , 1986 .

[78]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[79]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[80]  Christoph M. Michel,et al.  Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes , 2005, NeuroImage.

[81]  F. Di Russo,et al.  Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies , 2001, Clinical Neurophysiology.

[82]  M. Baciu,et al.  Evaluating fMRI methods for assessing hemispheric language dominance in healthy subjects. , 2005, European journal of radiology.

[83]  Nathalie Guyader,et al.  Neural correlates of spatial frequency processing: A neuropsychological approach , 2006, Brain Research.

[84]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[85]  C. Malsburg,et al.  The role of complex cells in object recognition , 2002, Vision Research.

[86]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[87]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[89]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[90]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[91]  J. Kaas Theories of Visual Cortex Organization in Primates , 1997 .

[92]  Christoph M. Michel,et al.  The Neural Substrates and Timing of Top–Down Processes during Coarse-to-Fine Categorization of Visual Scenes: A Combined fMRI and ERP Study , 2010, Journal of Cognitive Neuroscience.

[93]  G L Shulman,et al.  The Role of Spatial-Frequency Channels in the Perception of Local and Global Structure , 1986, Perception.

[94]  Monica Baciu,et al.  Hemispheric predominance assessment of phonology and semantics: A divided visual field experiment , 2006, Brain and Cognition.

[95]  Laurent Lamalle,et al.  fMRI retinotopic mapping at 3 T: benefits gained from correcting the spatial distortions due to static field inhomogeneity. , 2010, Journal of vision.