Relaxation behavior and energy storage of A-site substituted Sr_4−xNa_2−xLa_xTa_0.6Nb_9.4O_30 ferroelectric ceramics

[1]  Feng Pan,et al.  Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal , 2022, Nature Communications.

[2]  Shiqing Deng,et al.  Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design , 2022, Nature Communications.

[3]  X. Chao,et al.  Enhanced energy storage properties and superior thermal stability in SNN-based tungsten bronze ceramics through substitution strategy , 2022, Journal of the European Ceramic Society.

[4]  Longtu Li,et al.  Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors , 2021, Journal of Advanced Ceramics.

[5]  Wangfeng Bai,et al.  Pb/Bi-free Tungsten Bronze-Based Relaxor Ferroelectric Ceramics with Remarkable Energy Storage Performance , 2021, ACS Applied Energy Materials.

[6]  Xiao Li Zhu,et al.  Ferroelectric transition and structural modulation in Sr2Na(Nb1−xTax)5O15 tungsten bronze ceramics , 2021, Journal of Applied Physics.

[7]  F. Gao,et al.  Exploration about superior anti-counterfeiting ability of Sm3+ doped KSr2Nb5O15 photochromic ceramics: Origin and atomic-scale mechanism , 2021, Journal of Materiomics.

[8]  J. Zhai,et al.  Simultaneously Realizing Superior Energy Storage Properties and Outstanding Charge-Discharge Performances in Tungsten Bronze-Based Ceramic for Capacitor Applications. , 2021, Inorganic chemistry.

[9]  Wangfeng Bai,et al.  Remarkable capacitive performance in novel tungsten bronze ceramics. , 2020, Dalton transactions.

[10]  M. Deluca,et al.  Strategies to Improve the Energy Storage Properties of Perovskite Lead-Free Relaxor Ferroelectrics: A Review , 2020, Materials.

[11]  Shuren Zhang,et al.  Relaxor Nature and Energy Storage Properties of Sr2–xMxNaNb5–xTixO15 (M = La3+ and Ho3+) Tungsten Bronze Ceramics , 2020 .

[12]  Laijun Liu,et al.  Re‐entrant dipole glass‐like behavior and lattice dynamics of 0.65Bi(Mg 1/2 Ti 1/2 )O 3 ‐0.35PbTiO 3 , 2020, Journal of the American Ceramic Society.

[13]  M. Rosen,et al.  A review of energy storage types, applications and recent developments , 2020 .

[14]  X. Zuo,et al.  Structural, magnetic, and dielectric properties of tungsten bronze Ba4Nd2Fe2-Ni Nb8O30 (0 ≤ x ≤ 1) ceramics , 2019, Journal of Alloys and Compounds.

[15]  X. Dong,et al.  Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability , 2018 .

[16]  Laijun Liu,et al.  Revisiting the temperature‐dependent dielectric permittivity of Ba(Ti1−xZrx)O3 , 2018 .

[17]  Xiao Li Zhu,et al.  Relaxor nature in Ba5RZr3Nb7O30 (R = La, Nd, Sm) tetragonal tungsten bronze new system , 2018 .

[18]  X. Chao,et al.  Electrical and transparent properties induced by structural modulation in (Sr0.925Ca0.075)2.5–0.5xNa xNb5O15 ceramics , 2017 .

[19]  Zupei Yang,et al.  Variation of electrical properties with structural vacancies in ferroelectric niobates (Sr0.53Ba0.47)2.5−0.5xNaxNb5O15 ceramics , 2016 .

[20]  X. Chen,et al.  Structural, dielectric and magnetic properties of Ba 3 SrLn 2 Fe 2 Nb 8 O 30 (Ln = La, Nd, Sm) filled tungsten bronze ceramics , 2016 .

[21]  F. Morrison,et al.  Relaxor-to-ferroelectric crossover and disruption of polar order in ‘empty’ tetragonal tungsten bronzes , 2016 .

[22]  W. C. Gan,et al.  The structural and electrical properties of SrxBa(1−x)Nb2O6 (SBN) ceramic with varied composition , 2015 .

[23]  F. Morrison,et al.  A Crystal-Chemical Framework for Relaxor versus Normal Ferroelectric Behavior in Tetragonal Tungsten Bronzes , 2015 .

[24]  B. Ploss,et al.  Phase transitions and electrical characterizations of (K0.5Na0.5)2x(Sr0.6Ba0.4)5−xNb10O30 (KNSBN) ceramics with ‘unfilled’ and ‘filled’ tetragonal tungsten–bronze (TTB) crystal structure , 2012 .

[25]  K. Reichmann,et al.  Weak-relaxor behaviour in Bi/Yb-doped KNbO3 ceramics , 2011 .

[26]  R. Jiménez,et al.  Structural effects behind the low temperature nonconventional relaxor behavior of the Sr2NaNb5O15 bronze. , 2011, Inorganic chemistry.

[27]  Zupei Yang,et al.  Phase formation, microstructure and dielectric properties of Sr0.53Ba0.47Nb2−xTaxO6 ceramics , 2010 .

[28]  S. Trolier-McKinstry,et al.  High‐Energy Density Capacitors Utilizing 0.7 BaTiO3–0.3 BiScO3 Ceramics , 2009 .

[29]  R. Jiménez,et al.  Structural Singularities in Ferroelectric Sr2NaNb5O15 , 2007 .

[30]  M. Kosec,et al.  Relaxorlike dielectric dynamics in the lead-free K0.5Na0.5NbO3-SrZrO3 ceramic system , 2007 .

[31]  R. Neurgaonkar,et al.  Anisotropic glasslike characteristics of strontium barium niobate relaxors , 1994 .

[32]  L. E. Cross,et al.  Freezing of the polarization fluctuations in lead magnesium niobate relaxors , 1990 .

[33]  L. E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations , 1989 .

[34]  K. Uchino,et al.  Critical exponents of the dielectric constants in diffused-phase-transition crystals , 1982 .

[35]  P. Fleury The Effects of Soft Modes on the Structure and Properties of Materials , 1976 .

[36]  I. Guedes,et al.  Phonon spectra of CBN crystals , 2012 .

[37]  Zhang Dong-jie,et al.  Dynamics on Microdomain-Macrodomain Transition of Relaxor Ferroelectrics , 2004 .