Fusion of Hyperspectral and LiDAR Data With a Novel Ensemble Classifier

Due to the development of sensors and data acquisition technology, the fusion of features from multiple sensors is a very hot topic. In this letter, the use of morphological features to fuse a hyperspectral (HS) image and a light detection and ranging (LiDAR)-derived digital surface model (DSM) is exploited via an ensemble classifier. In each iteration, we first apply morphological openings and closings with a partial reconstruction on the first few principal components (PCs) of the HS and LiDAR data sets to produce morphological features to model spatial and elevation information for HS and LiDAR data sets. Second, three groups of features (i.e., spectral and morphological features of HS and LiDAR data) are split into several disjoint subsets. Third, data transformation is applied to each subset and the features extracted in each subset are stacked as the input of a random forest classifier. Three data transformation methods, including PC analysis, linearity preserving projection, and unsupervised graph fusion, are introduced into the ensemble classification process. Finally, we integrate the classification results achieved at each step by a majority vote. Experimental results on coregistered HS and LiDAR-derived DSM demonstrate the effectiveness and potentialities of the proposed ensemble classifier.

[1]  Peijun Du,et al.  Random Subspace Ensembles for Hyperspectral Image Classification With Extended Morphological Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Tülay Adali,et al.  Classification of hyperspectral data with ensemble of subspace ICA and edge-preserving filtering , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  Uwe Weidner,et al.  Improvements of roof surface classification using hyperspectral and laser scanning data , 2005 .

[4]  Antonio J. Plaza,et al.  Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  Xiaohua Tong,et al.  Urban Land Cover Classification With Airborne Hyperspectral Data: What Features to Use? , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Peijun Du,et al.  Semi-supervised graph fusion of hyperspectral and lidar data for classification , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[7]  M. Cho,et al.  Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment , 2012 .

[8]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[9]  Ulugbek Kamilov,et al.  Autocalibration of lidar and optical cameras via edge alignment , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Liangpei Zhang,et al.  Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote Sensed Scene , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[12]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Aleksandra Pizurica,et al.  Classification of Hyperspectral Data Over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  Aleksandra Pizurica,et al.  Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features , 2015, IEEE Geoscience and Remote Sensing Letters.

[15]  Jon Atli Benediktsson,et al.  A Novel MKL Model of Integrating LiDAR Data and MSI for Urban Area Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Naoto Yokoya,et al.  Fusion of Hyperspectral and LiDAR Data for Landscape Visual Quality Assessment , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Naoto Yokoya,et al.  Hyperspectral Tree Species Classification of Japanese Complex Mixed Forest With the Aid of Lidar Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Jon Atli Benediktsson,et al.  Classification of Remote Sensing Optical and LiDAR Data Using Extended Attribute Profiles , 2012, IEEE Journal of Selected Topics in Signal Processing.

[19]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[20]  Xiaohua Tong,et al.  A Probability-Based Improved Binary Encoding Algorithm for Classification of Hyperspectral Images , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Aleksandra Pizurica,et al.  Combining feature fusion and decision fusion for classification of hyperspectral and LiDAR data , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[22]  Uwe Soergel,et al.  A new binary encoding algorithm for the simultaneous region-based classification of hyperspectral data and digital surface models , 2011 .

[23]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[24]  Jon Atli Benediktsson,et al.  Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis , 2011, IEEE Geoscience and Remote Sensing Letters.

[25]  Peijun Du,et al.  Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Qian Du,et al.  Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Jocelyn Chanussot,et al.  Rotation-Based Ensemble Classifiers for High-Dimensional Data , 2014, Fusion in Computer Vision.

[28]  Juan José Rodríguez Diez,et al.  An Experimental Study on Rotation Forest Ensembles , 2007, MCS.