Search for Solar ^{8}B Neutrinos in the PandaX-4T Experiment Using Neutrino-Nucleus Coherent Scattering.
暂无分享,去创建一个
P. Zhang | W. Wang | Xiaohui Cui | Siguang Wang | Yunhua Chen | Shuaijie Li | K. Giboni | Chun-xu Yu | Y. Mao | Li-Hui Geng | Jianglai Liu | Meng Wang | Yuehuan Wei | L. Gu | Ying Yuan | Zhenxiong Yuan | Li Zhao | Guofang Shen | A. Tan | Xun Chen | D. Fang | Xuyuan Guo | Y. Ju | X. Ren | Qiuhong Wang | Zhou Wang | P. Xie | N. Zhou | Xiaopeng Zhou | Jijun Yang | C. Fu | Minzhen Zhang | Chenxiang Li | Yu-Xia Luo | Zhou Huang | Y. Meng | Jingkai Xia | Dan Zhang | A. Abdukerim | Wei Chen | C. He | D. Huang | Xiuli Wang | Jifang Zhou | Kyong Chol Han | Anqing Wang | N. Shaheed | Yong Zhou | Ling-Zhi Luo | Jinrong He | Shaobo Wang | Yinyong Tao | Zhicheng Qian | L. Si | Zihao Bo | Chen Cheng | Yingjie Fan | M. Fu | Yanlin Huang | Ruquan Hou | Shu Li | Qingjie Lin | Wenbo Ma | X. Ning | Ning Qi | C. Shang | Mengmeng Wu | Xiyu Yan | Q. Zheng | X. Ji | Yuan-Jie Zhang | Zhaokan Cheng | Jiafu Li | Mingchuan Li | Xiaoying Lu | Yugang Ma | Xiaofeng Shang | Wenliang Sun | Wei-Long Wu | Yong Yang | Shibo Zhang | Shu Zhang | Yubo Zhou | M. Xiao | B. Yan | C. Han | X. Xiao | Yingxin Zhang | J. Yuan | Zhang Tao | X. Zeng | X. Shang | Guo-fang Shen
[1] Tao Zhang,et al. Study of background from accidental coincidence signals in the PandaX-II experiment , 2022, Chinese Physics C.
[2] J. Yang,et al. A 500 MS/s waveform digitizer for PandaX dark matter experiments , 2021, Journal of Instrumentation.
[3] R. Lang,et al. Recommended conventions for reporting results from direct dark matter searches , 2021, The European Physical Journal C.
[4] Tao Zhang,et al. The cryogenics and xenon handling system for the PandaX-4T experiment , 2020, Journal of Instrumentation.
[5] V. C. Antochi,et al. Search for Coherent Elastic Scattering of Solar ^{8}B Neutrinos in the XENON1T Dark Matter Experiment. , 2020, Physical review letters.
[6] R. Webb,et al. Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique , 2020, Physical Review D.
[7] J. J. Wang,et al. Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment , 2020, Astroparticle Physics.
[8] V. C. Antochi,et al. Projected WIMP sensitivity of the XENONnT dark matter experiment , 2020, Journal of Cosmology and Astroparticle Physics.
[9] C. R. Hall,et al. Investigation of background electron emission in the LUX detector , 2020, Physical Review D.
[10] J. P. Rodrigues,et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.
[11] Dongqing Huang. Ultra-Low Energy Calibration of the LUX and LZ Dark Matter Detectors , 2020 .
[12] J. Xu,et al. Measurement of the ionization yield from nuclear recoils in liquid xenon between 0.3 -- 6 keV with single-ionization-electron sensitivity , 2019, 1908.00518.
[13] V. C. Antochi,et al. Light Dark Matter Search with Ionization Signals in XENON1T. , 2019, Physical Review Letters.
[14] A. D. Ludovico,et al. Comprehensive measurement of pp-chain solar neutrinos , 2018, Nature.
[15] F. Gao,et al. Simultaneous measurement of the light and charge response of liquid xenon to low-energy nuclear recoils at multiple electric fields , 2018, Physical Review D.
[16] Pengwei Xie,et al. Dark matter direct search sensitivity of the PandaX-4T experiment , 2018, Science China Physics, Mechanics & Astronomy.
[17] E Aprile,et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.
[18] P. Sorensen. Electron train backgrounds in liquid xenon dark matter search detectors are indeed due to thermalization and trapping , 2017, 1702.04805.
[19] S Fiorucci,et al. Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.
[20] S. Basu,et al. A New Generation of Standard Solar Models , 2016, 1611.09867.
[21] Witherell,et al. Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics , 2016, 1608.05381.
[22] E. Figueroa-Feliciano,et al. Complementarity of dark matter detectors in light of the neutrino background , 2014, 1408.3581.
[23] Jainmin Li,et al. The second-phase development of the China JinPing underground laboratory , 2014, 1404.2651.
[24] F. V. Massoli,et al. Observation and applications of single-electron charge signals in the XENON100 experiment , 2013, 1311.1088.
[25] M. Woods. The Noble Element Simulation Technique (NEST) , 2013 .
[26] S. Elliott,et al. Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory , 2011, 1109.0763.
[27] Jing Cheng,et al. Status and prospects of a deep underground laboratory in China , 2010 .