Optimal Stability of Bivariate Tensor Product Bases
暂无分享,去创建一个
[1] Juan Manuel Peña,et al. A general class of Bernstein-like bases , 2007, Comput. Math. Appl..
[2] Juan Manuel Peña Fernández,et al. A corner cutting algorithm for evaluating rational Bézier surfaces and the optimal stability of the basis , 2007 .
[3] Rida T. Farouki,et al. On the optimal stability of the Bernstein basis , 1996, Math. Comput..
[4] Guozhao Wang,et al. A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..
[5] Juan Manuel Peña,et al. Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..
[6] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[7] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[8] Juan Manuel Peña,et al. On the optimal stability of bases of univariate functions , 2002, Numerische Mathematik.
[9] Juan Manuel Peña,et al. Totally positive bases for shape preserving curve design and optimality of B-splines , 1994, Comput. Aided Geom. Des..
[10] Tom Lyche,et al. Optimally Stable Multivariate Bases , 2004, Adv. Comput. Math..
[11] T. Goodman. Shape preserving representations , 1989 .
[12] Juan Manuel Peña. B-splines and optimal stability , 1997, Math. Comput..
[13] Zhang Jiwen,et al. C-curves: An extension of cubic curves , 1996, Comput. Aided Geom. Des..
[14] Juan Manuel Peña,et al. Shape preserving representations for trigonometric polynomial curves , 1997, Comput. Aided Geom. Des..
[15] Tim N. T. Goodman,et al. Blossoming beyond Extended Chebyshev Spaces , 2001, J. Approx. Theory.