On the asymptotic behaviour of the posterior distribution in hidden Markov Models with unknown number of states
暂无分享,去创建一个
[1] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[2] G. Churchill. Stochastic models for heterogeneous DNA sequences. , 1989, Bulletin of mathematical biology.
[3] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[4] M. Puterman,et al. Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. , 1992, Biometrics.
[5] S. Chib,et al. Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts , 1993 .
[6] S. Eddy. Hidden Markov models. , 1996, Current opinion in structural biology.
[7] Lain L. MacDonald,et al. Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .
[8] T. Rydén,et al. Stylized Facts of Daily Return Series and the Hidden Markov Model , 1998 .
[9] E. Rio. Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes , 2000 .
[10] E. Gassiat,et al. The likelihood ratio test for the number of components in a mixture with Markov regime , 2000 .
[11] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[12] Christophe Andrieu,et al. Simulated annealing for maximum a Posteriori parameter estimation of hidden Markov models , 2000, IEEE Trans. Inf. Theory.
[13] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[14] E. Gassiat. Likelihood ratio inequalities with applications to various mixtures , 2002 .
[15] P. Green,et al. Hidden Markov Models and Disease Mapping , 2002 .
[16] Xiao-Hua Zhou,et al. NONPARAMETRIC ESTIMATION OF COMPONENT DISTRIBUTIONS IN A MULTIVARIATE MIXTURE , 2003 .
[17] Stéphane Boucheron,et al. Optimal error exponents in hidden Markov models order estimation , 2003, IEEE Trans. Inf. Theory.
[18] Richard J Boys,et al. A Bayesian Approach to DNA Sequence Segmentation , 2004, Biometrics.
[19] R. Douc,et al. Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime , 2004, math/0503681.
[20] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[21] Luigi Spezia,et al. Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes , 2009 .
[22] Aurélien Garivier,et al. A minimum description length approach to hidden Markov models with Poisson and Gaussian emissions. Application to order identification , 2009 .
[23] C. Matias,et al. Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.
[24] D. M. Titterington,et al. VARIATIONAL BAYESIAN ANALYSIS FOR HIDDEN MARKOV MODELS , 2009 .
[25] Meïli Baragatti. Sélection bayésienne de variables et méthodes de type Parallel Tempering avec et sans vraisemblance , 2011 .
[26] K. Mengersen,et al. Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .
[27] Elisabeth Gassiat,et al. The local geometry of finite mixtures , 2013 .