On the asymptotic behaviour of the posterior distribution in hidden Markov Models with unknown number of states

We consider finite state space stationary hidden Markov models (HMMs) in the situation where the number of hidden states is unknown. We provide a frequentist asymptotic evaluation of Bayesian analysis methods. Our main result gives posterior concentration rates for the marginal densities, that is for the density of a fixed number of consecutive observations. Using conditions on the prior, we are then able to define a consistent Bayesian estimator of the number of hidden states. It is known that the likelihood ratio test statistic for overfitted HMMs has a non standard behaviour and is unbounded. Our conditions on the prior may be seen as a way to penalize parameters to avoid this phenomenon. Inference of parameters is a much more difficult task than inference of marginal densities, we still provide a precise description of the situation when the observations are i.i.d. and we allow for 2 possible hidden states.

[1]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[2]  G. Churchill Stochastic models for heterogeneous DNA sequences. , 1989, Bulletin of mathematical biology.

[3]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[4]  M. Puterman,et al.  Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. , 1992, Biometrics.

[5]  S. Chib,et al.  Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts , 1993 .

[6]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[7]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[8]  T. Rydén,et al.  Stylized Facts of Daily Return Series and the Hidden Markov Model , 1998 .

[9]  E. Rio Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes , 2000 .

[10]  E. Gassiat,et al.  The likelihood ratio test for the number of components in a mixture with Markov regime , 2000 .

[11]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[12]  Christophe Andrieu,et al.  Simulated annealing for maximum a Posteriori parameter estimation of hidden Markov models , 2000, IEEE Trans. Inf. Theory.

[13]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[14]  E. Gassiat Likelihood ratio inequalities with applications to various mixtures , 2002 .

[15]  P. Green,et al.  Hidden Markov Models and Disease Mapping , 2002 .

[16]  Xiao-Hua Zhou,et al.  NONPARAMETRIC ESTIMATION OF COMPONENT DISTRIBUTIONS IN A MULTIVARIATE MIXTURE , 2003 .

[17]  Stéphane Boucheron,et al.  Optimal error exponents in hidden Markov models order estimation , 2003, IEEE Trans. Inf. Theory.

[18]  Richard J Boys,et al.  A Bayesian Approach to DNA Sequence Segmentation , 2004, Biometrics.

[19]  R. Douc,et al.  Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime , 2004, math/0503681.

[20]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[21]  Luigi Spezia,et al.  Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes , 2009 .

[22]  Aurélien Garivier,et al.  A minimum description length approach to hidden Markov models with Poisson and Gaussian emissions. Application to order identification , 2009 .

[23]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[24]  D. M. Titterington,et al.  VARIATIONAL BAYESIAN ANALYSIS FOR HIDDEN MARKOV MODELS , 2009 .

[25]  Meïli Baragatti Sélection bayésienne de variables et méthodes de type Parallel Tempering avec et sans vraisemblance , 2011 .

[26]  K. Mengersen,et al.  Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .

[27]  Elisabeth Gassiat,et al.  The local geometry of finite mixtures , 2013 .