POP-1 and Anterior–Posterior Fate Decisions in C. elegans Embryos

[1]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[2]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[3]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[4]  W. Carter,et al.  Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits , 1987, The Journal of cell biology.

[5]  H. Horvitz,et al.  lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. , 1988, Developmental biology.

[6]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[7]  H. Clevers,et al.  Identification and cloning of TCF‐1, a T lymphocyte‐specific transcription factor containing a sequence‐specific HMG box. , 1991, The EMBO journal.

[8]  B. Goldstein Induction of gut in Caenorhabditis elegans embryos , 1992, Nature.

[9]  Bruce Bowerman,et al.  skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo , 1992, Cell.

[10]  Harold Weintraub,et al.  The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos , 1992, Cell.

[11]  Roel Nusse,et al.  Wnt genes , 1992, Cell.

[12]  Bruce Bowerman,et al.  The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos , 1993, Cell.

[13]  B. Goldstein Establishment of gut fate in the E lineage of C. elegans: the roles of lineage-dependent mechanisms and cell interactions. , 1993, Development.

[14]  S. Mango,et al.  Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo. , 1994, Development.

[15]  R. Schnabel,et al.  glp-1 and inductions establishing embryonic axes in C. elegans. , 1994, Development.

[16]  J. Rothman,et al.  Combinatorial specification of blastomere identity by glp-1-dependent cellular interactions in the nematode Caenorhabditis elegans. , 1994, Development.

[17]  J. Rothman,et al.  The potential to differentiate epidermis is unequally distributed in the AB lineage during early embryonic development in C. elegans. , 1994, Developmental biology.

[18]  B. Draper,et al.  The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo , 1994, Cell.

[19]  R. Schnabel,et al.  Specification of anterior-posterior differences within the AB lineage in the C. elegans embryo: a polarising induction. , 1995, Development.

[20]  R. Lin,et al.  pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in Early C. elegans embryos , 1995, Cell.

[21]  K. Kemphues,et al.  par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed , 1995, Cell.

[22]  J. McGhee Cell fate decisions in the early embryo of the nematode Caenorhabditis elegans. , 1995, Developmental genetics.

[23]  J. Rothman,et al.  lin-12 and glp-1 are required zygotically for early embryonic cellular interactions and are regulated by maternal GLP-1 signaling in Caenorhabditis elegans. , 1996, Development.

[24]  A. Fire,et al.  Repression of gene expression in the embryonic germ lineage of C. elegans , 1996, Nature.

[25]  C. Mello,et al.  The PIE-1 protein and germline specification in C. elegans embryos , 1996, Nature.

[26]  J White,et al.  Four-Dimensional Imaging: Computer Visualization of 3D Movements in Living Specimens , 1996, Science.

[27]  H. Schnabel,et al.  mex-1 and the general partitioning of cell fate in the earlyC. elegans embryo , 1996, Mechanisms of Development.

[28]  C. Hunter,et al.  Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos , 1996, Cell.

[29]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. , 1996, Genes & development.

[30]  M. Peifer Regulating Cell Proliferation--As Easy as APC , 1996, Science.

[31]  J. Priess,et al.  The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. , 1997, Development.

[32]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[33]  R. Moon,et al.  WNTs modulate cell fate and behavior during vertebrate development. , 1997, Trends in genetics : TIG.

[34]  K. Kemphues,et al.  Fertilization and Establishment of Polarity in the Embryo , 1997 .

[35]  Hans Clevers,et al.  Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF , 1997, Cell.

[36]  R. Moon,et al.  The APC tumor suppressor protein in development and cancer. , 1997, Trends in genetics : TIG.

[37]  C. Mello,et al.  Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos , 1997, Cell.

[38]  R. Schnabel,et al.  Specification of Cell Fates in the Early Embryo , 1997 .