Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study
暂无分享,去创建一个
[1] Alejandro J. Rodríguez-Luis,et al. A Method for Homoclinic and Heteroclinic Continuation in Two and Three Dimensions , 1990 .
[2] Mark J. Friedman,et al. Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds , 1993 .
[3] Mark J. Friedman,et al. Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .
[4] Stephen Schecter,et al. The saddle-node separatrix-loop bifurcation , 1987 .
[5] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[6] E. Dowell,et al. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers , 1988 .
[7] Xiao-Biao Lin,et al. Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[8] Wolf-Jürgen Beyn. Global Bifurcations and their Numerical Computation , 1990 .
[9] Stephen Schecter,et al. Numerical computation of saddle-node homoclinic bifurcation points , 1993 .
[10] Brian D. Hassard. Computation of invariant manifolds , 1980 .
[11] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[12] S. Chow,et al. Bifurcation of a homoclinic orbit with a saddle-node equilibrium , 1990 .