Chemiresistive sensor based on hollow Fe2O3 octahedrons incorporated into porous In2O3 nanofibers for enhanced sensing performance and recognition toward triethylamine

[1]  G. Lu,et al.  Highly Selective and Humidity-Resistant Triethylamine Sensors Based on Pt and Cr2O3 Nanoparticles , 2022, ACS Applied Nano Materials.

[2]  Yizhuo Fan,et al.  Sulfur vacancy-rich ZnIn2S4 microflower with {0001} facets for rapid sensing of triethylamine , 2022, Sensors and Actuators B: Chemical.

[3]  Zhihua Wang,et al.  Effects of hydrogen treatment on the triethylamine-sensing properties of the platinum-loaded In2O3 nanosheets , 2022, Sensors and Actuators B: Chemical.

[4]  Yue Wang,et al.  Polyoxometalate-assisted in situ growth of ZnMoO4 on ZnO nanofibers for the selective detection of ppb-level acetone , 2022, Sensors and Actuators B: Chemical.

[5]  Yinghao Guo,et al.  Metal Oxide Semiconductor Sensors for Triethylamine Detection: Sensing Performance and Improvements , 2022, Chemosensors.

[6]  Shu Han Chen,et al.  SnO2 Nanostructures Exposed with Various Crystal Facets for Temperature-Modulated Sensing of Volatile Organic Compounds , 2022, ACS Applied Nano Materials.

[7]  Yan Xu,et al.  Highly sensitive and selective triethylamine gas sensor based on hierarchical radial CeO2/ZnO n-n heterojunction , 2022, Sensors and Actuators B: Chemical.

[8]  C. Xing,et al.  Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode , 2022, Sensors and Actuators B: Chemical.

[9]  Abid Ali Khan,et al.  Insight into metallic oxide semiconductor (SnO2, ZnO, CuO, α-Fe2O3, WO3)-carbon nitride (g-C3N4) heterojunction for gas sensing application , 2021, Sensors and Actuators A: Physical.

[10]  Li Chen,et al.  A Temperature-Modulated Gas Sensor Based on CdO-Decorated Porous ZnO Nanobelts for the Recognizable Detection of Ethanol, Propanol, and Isopropanol , 2021, IEEE Sensors Journal.

[11]  Fanli Meng,et al.  Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation , 2021, Sensors and Actuators B: Chemical.

[12]  Nguyen Ngoc Viet,et al.  Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection , 2021 .

[13]  Song Xiao,et al.  Chemiresistive Gas Sensors Based on Hollow Heterojunction: A Review , 2021, Advanced Materials Interfaces.

[14]  Yong Jiang,et al.  Superior NO2 Sensing of MOF-Derived Indium-Doped ZnO Porous Hollow Cages. , 2020, ACS applied materials & interfaces.

[15]  Y. Kim,et al.  Design of Hollow Nanofibrous Structures using Electrospinning: An Aspect of Chemical Sensor Applications , 2020 .

[16]  Xianghong Liu,et al.  Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine , 2019 .

[17]  Yan Tian,et al.  Facile Synthesis of Fe2O3 Nanomaterials from MIL-101(Fe) Template and Its Application in Lithium Ion Batteries , 2019, Journal of Nanomaterials.

[18]  Won‐Tae Koo,et al.  Metal-Organic Frameworks for Chemiresistive Sensors , 2019, Chem.

[19]  Han Hu,et al.  Enhanced photocatalysis using metal–organic framework MIL-101(Fe) for organophosphate degradation in water , 2019, Environmental Science and Pollution Research.

[20]  C. Xie,et al.  Metal-Organic Framework-Assisted Construction of TiO2/Co3O4 Highly Ordered Necklace-like Heterostructures for Enhanced Ethanol Vapor Sensing Performance. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[21]  Yun Yu,et al.  Controlled Nucleation and Controlled Growth for Size Predicable Synthesis of Nanoscale Metal-Organic Frameworks (MOFs): A General and Scalable Approach. , 2018, Angewandte Chemie.

[22]  Qian Wang,et al.  Enhanced triethylamine-sensing properties of P-N heterojunction Co3O4/In2O3 hollow microtubes derived from metal–organic frameworks , 2018, Sensors and Actuators B: Chemical.

[23]  G. Wang,et al.  Morphology-controlled porous α-Fe2O3/SnO2 nanorods with uniform surface heterostructures and their enhanced acetone gas-sensing properties , 2018 .

[24]  Zheng Lou,et al.  Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity , 2017 .

[25]  Seon-Jin Choi,et al.  Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. , 2017, Journal of the American Chemical Society.

[26]  Ning Han,et al.  MOF-derived hierarchical ZnO/ZnFe2O4 hollow cubes for enhanced acetone gas-sensing performance , 2017 .

[27]  Dongyuan Zhao,et al.  Ordered porous metal oxide semiconductors for gas sensing , 2017 .

[28]  Xingjiu Huang,et al.  Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance , 2016, Nanotechnology.

[29]  Sunghoon Park,et al.  Synthesis, Structure, and Ethanol Gas Sensing Properties of In2O3 Nanorods Decorated with Bi2O3 Nanoparticles. , 2015, ACS applied materials & interfaces.

[30]  H. Ahn,et al.  Fe-doped In2O3/α-Fe2O3 core/shell nanofibers fabricated by using a co-electrospinning method and its magnetic properties , 2014 .

[31]  Zhaoxiong Xie,et al.  MOF-templated synthesis of porous Co(3)O(4) concave nanocubes with high specific surface area and their gas sensing properties. , 2014, ACS applied materials & interfaces.

[32]  Jing Wang,et al.  Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol , 2014 .

[33]  Jian Jia,et al.  Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties , 2012 .

[34]  Zheng Guo,et al.  Templating Synthesis of SnO2 Nanotubes Loaded with Ag2O Nanoparticles and Their Enhanced Gas Sensing Properties , 2011 .

[35]  Il-Doo Kim,et al.  Nanostructured metal oxide gas sensors prepared by electrospinning , 2011 .

[36]  Yu Wang,et al.  Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires , 2010 .

[37]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[38]  Yong Jia,et al.  Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres , 2008, Nanotechnology.

[39]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[40]  Yue Wang,et al.  Ultra-sensitive triethylamine gas sensors based on polyoxometalate-assisted synthesis of ZnWO4/ZnO hetero-structured nanofibers , 2022, Sensors and Actuators B: Chemical.

[41]  Xiaohong Wang,et al.  The fabrication and triethylamine sensing performance of In-MIL-68 derived In2O3 with porous lacunaris structure , 2021 .

[42]  Jing Wang,et al.  Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors , 2016 .