Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia.

[1]  M. Caligiuri,et al.  Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. , 2009, Blood.

[2]  É. Vivier,et al.  Genetic and antibody-mediated reprogramming of natural killer cell missing-self recognition in vivo , 2009, Proceedings of the National Academy of Sciences.

[3]  Jeffrey S. Miller Should natural killer cells be expanded in vivo or ex vivo to maximize their therapeutic potential? , 2009, Cytotherapy.

[4]  D. Campana,et al.  Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. , 2009, Cancer research.

[5]  P. Brodin,et al.  NK cell education: not an on-off switch but a tunable rheostat. , 2009, Trends in immunology.

[6]  M. Martinetti,et al.  Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. , 2009, Blood.

[7]  J. Passweg,et al.  Clinical‐grade purification of natural killer cells in haploidentical hematopoietic stem cell transplantation , 2009, Transfusion.

[8]  M. Labopin,et al.  KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia , 2009, Leukemia.

[9]  J. Wagner,et al.  Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. , 2008, Blood.

[10]  A. H. Jonsson,et al.  Chapter 2 Natural Killer Cell Tolerance , 2009 .

[11]  A. H. Jonsson,et al.  Natural killer cell tolerance licensing and other mechanisms. , 2009, Advances in immunology.

[12]  M. Sormani,et al.  Temporal, quantitative, and functional characteristics of single-KIR-positive alloreactive natural killer cell recovery account for impaired graft-versus-leukemia activity after haploidentical hematopoietic stem cell transplantation. , 2008, Blood.

[13]  L. Ruggeri,et al.  Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. , 2008, Blood.

[14]  Peter Parham,et al.  MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. , 2008, Blood.

[15]  Jeffrey S. Miller,et al.  Use of natural killer cells as immunotherapy for leukaemia. , 2008, Best practice & research. Clinical haematology.

[16]  L. Ruggeri,et al.  Human leukocyte antigens A23, A24, and A32 but not A25 are ligands for KIR3DL1. , 2008, Blood.

[17]  F. Locatelli,et al.  Human NK cells: from HLA class I‐specific killer Ig‐like receptors to the therapy of acute leukemias , 2008, Immunological reviews.

[18]  D. Raulet,et al.  Regulation of NK cell responsiveness to achieve self‐tolerance and maximal responses to diseased target cells , 2008, Immunological reviews.

[19]  F. Christiansen,et al.  The reactivity of Bw4+ HLA-B and HLA-A alleles with KIR3DL1: implications for patient and donor suitability for haploidentical stem cell transplantations. , 2008, Blood.

[20]  Lewis L Lanier,et al.  Up on the tightrope: natural killer cell activation and inhibition , 2008, Nature Immunology.

[21]  F. Christiansen,et al.  KIR2DS1-mediated activation overrides NKG2A-mediated inhibition in HLA-C C2-negative individuals. , 2008, International immunology.

[22]  P. Parham,et al.  Synergistic Polymorphism at Two Positions Distal to the Ligand-Binding Site Makes KIR2DL2 a Stronger Receptor for HLA-C Than KIR2DL31 , 2008, The Journal of Immunology.

[23]  J. Chewning,et al.  KIR2DS1-Positive NK Cells Mediate Alloresponse against the C2 HLA-KIR Ligand Group In Vitro1 , 2007, The Journal of Immunology.

[24]  H. Ljunggren,et al.  Prospects for the use of NK cells in immunotherapy of human cancer , 2007, Nature Reviews Immunology.

[25]  J. Wagner,et al.  Good manufacturing practices production of natural killer cells for immunotherapy: a six‐year single‐institution experience , 2007, Transfusion.

[26]  M. Martelli,et al.  Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. , 2006, Blood.

[27]  P. Parham Taking license with natural killer cell maturation and repertoire development , 2006, Immunological reviews.

[28]  M. Martelli,et al.  Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self , 2006, Immunological reviews.

[29]  D. Middleton,et al.  Human NK cell education by inhibitory receptors for MHC class I. , 2006, Immunity.

[30]  P. Parham,et al.  Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function , 2006, The Journal of experimental medicine.

[31]  C. Witt,et al.  The relevance of natural killer cell human leucocyte antigen epitopes and killer cell immunoglobulin‐like receptors in bone marrow transplantation , 2006, Vox sanguinis.

[32]  R. Vance,et al.  A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. , 2005, Blood.

[33]  C. Le,et al.  Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. , 2005, Blood.

[34]  L. Moretta,et al.  Killer immunoglobulin-like receptors. , 2004, Current opinion in immunology.

[35]  Todd A Fehniger,et al.  Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. , 2002, Blood.

[36]  Alessandro,et al.  NK cells: a lesson from mismatched hematopoietic transplantation. , 2002, Trends in immunology.

[37]  K. Kärre A Perfect Mismatch , 2002, Science.

[38]  Katia Perruccio,et al.  Effectiveness of Donor Natural Killer Cell Alloreactivity in Mismatched Hematopoietic Transplants , 2002, Science.

[39]  M. Colonna,et al.  Human Natural Killer Cell Receptors and Signal Transduction , 2001, International reviews of immunology.

[40]  A. Tosti,et al.  Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. , 1999, Blood.

[41]  M. Martelli,et al.  Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. , 1998, The New England journal of medicine.

[42]  Y. Reisner,et al.  Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice , 1995, Nature Medicine.

[43]  K. Kärre Express yourself or die: peptides, MHC molecules, and NK cells. , 1995, Science.

[44]  F. Aversa,et al.  Successful engraftment of T-cell-depleted haploidentical "three-loci" incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. , 1994, Blood.

[45]  E. Brooks,et al.  Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. , 1993, Science.

[46]  J. Guardiola,et al.  Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans , 1992, The Journal of experimental medicine.

[47]  B. Dupont,et al.  Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. , 1983, Blood.