Mathematical and numerical modeling of two-phase compressible flows with micro-inertia

A new model with full coupling between micro- and macroscale motion is developed for compressible multiphase mixtures. The equations of motion and the coupling microstructural equation (an analogue of the Rayleigh-Lamb equation) are obtained by using the Hamilton principle of stationary action. In the particular case of bubbly fluids, the resulting model contains eight partial differential equations (one-dimensional case) and is unconditionally hyperbolic. The equations are solved numerically by an adapted Godunov method. The model and methods are validated for two very different test problems. The first one consists of a wave propagating in a liquid containing a small quantity of gas bubbles. Computed oscillating shock waves fit perfectly the experimental data. Then the one-dimensional multiphase model is used as a reduction tool for the multidimensional interaction of a shock wave with a large bubble. Good agreement is again obtained.

[1]  D. Serre Sur le principe variationnel des équations de la mécanique des fluides parfaits , 1993 .

[2]  Kurt Friedrichs,et al.  [71-1] Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686–1688 , 1986 .

[3]  L. van Wijngaarden,et al.  On the equations of motion for mixtures of liquid and gas bubbles , 1968, Journal of Fluid Mechanics.

[4]  G. Wallis On Geurst's equations for inertial coupling in two phase flow , 1990 .

[5]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[6]  Sergey Gavrilyuk,et al.  A new form of governing equations of fluids arising from Hamilton's principle , 1999, 0801.2333.

[7]  A. Prosperetti,et al.  Bubble Dynamics and Cavitation , 1977 .

[8]  C. Pauchon,et al.  Momentum interactions in dispersed flow: an averaging and a variational approach , 1992 .

[9]  Sergey Gavrilyuk,et al.  Hamilton's Principle and Rankine–Hugoniot Conditions for General Motions of Mixtures , 1999, 0802.1159.

[10]  J. A. Geurst Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures , 1986 .

[11]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. G. Lerner,et al.  Encyclopedia of Physics , 1990 .

[13]  Robert I. Nigmatulin,et al.  Dynamics of multiphase media , 1991 .

[14]  M. Kipp,et al.  Transient wave propagation in bubbly liquids , 1979, Journal of Fluid Mechanics.

[15]  H. Bruce Stewart,et al.  Two-phase flow: Models and methods , 1984 .

[16]  R. L. Seliger,et al.  Variational principles in continuum mechanics , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  M. Baer,et al.  Mathematical analysis of a two-phase continuum mixture theory , 1992 .

[18]  S. L. Passman,et al.  A Theory of Multiphase Mixtures , 1984 .

[19]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[20]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[21]  David H. Sharp,et al.  Two-phase modelling of a fluid mixing layer , 1999, Journal of Fluid Mechanics.

[22]  C. C. Lin Hydrodynamics of Helium II , 1987 .

[23]  P. Germain Mécanique des milieux continus , 1962 .

[24]  J. A. Geurst Virtual mass in two-phase bubbly flow , 1985 .

[25]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[26]  S. Gavrilyuk,et al.  Hyperbolic Models of Homogeneous Two-Fluid Mixtures , 1998, 0802.1120.

[27]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[28]  D. S. Drumheller,et al.  Theories of immiscible and structured mixtures , 1983 .

[29]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[30]  Yoichiro Matsumoto,et al.  Shock waves in a uniform bubbly flow , 1998 .

[31]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[32]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[33]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues , 1999 .

[34]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[35]  Steven F. Son,et al.  Two-phase modeling of DDT: Structure of the velocity-relaxation zone , 1997 .

[36]  Rémi Abgrall,et al.  Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur , 2002 .

[37]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .