Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2 interface

The experimentally observed dependence of effective surface recombination velocity Seff at the Si‐SiO2 interface on light‐induced minority carrier excess concentration is compared with theoretical predictions of an ‘‘extended Shockley–Read–Hall (SRH) formalism.’’ The calculations of SRH‐recombination rates at the Si‐SiO2 interface are based on the theory of a surface space charge layer under nonequilibrium conditions and take into account the impact of illumination level, gate metal work function, fixed oxide charge density, and the energy dependence of capture cross sections σn, σp and interface state density Dit. Applying this theory to p‐type silicon surfaces covered by high quality thermal oxides, the experimentally observed strong increase of Seff with decreasing minority carrier excess concentration could quantitatively be attributed to the combined effect of the σn/σp ratio of about 1000 at midgap and the presence of a positive fixed oxide charge density Qf of about 1×1011 charges/cm2. Due to the f...

[1]  A. S. Grove,et al.  Surface effects on p-n junctions: Characteristics of surface space-charge regions under non-equilibrium conditions , 1966 .

[2]  Kimiyoshi Yamasaki,et al.  Deep Level Transient Spectroscopy of Bulk Traps and Interface States in Si MOS Diodes , 1979 .

[3]  A. S. Grove,et al.  Surface recombination in semiconductors , 1968 .

[4]  N. M. Johnson,et al.  Energy‐resolved DLTS measurement of interface states in MIS structures , 1979 .

[5]  R. Mertens,et al.  Determination of Si-SiO/sub 2/ interface recombination parameters using a gate-controlled point-junction diode under illumination , 1988 .

[6]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[7]  D. Lang Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors , 1974 .

[8]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[9]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[10]  Richard M. Swanson,et al.  Improvements in the determination of interface state density using deep level transient spectroscopy , 1984 .

[11]  Teruaki Katsube,et al.  Temperature and energy dependences of capture cross sections at surface states in Si metal‐oxide‐semiconductor diodes measured by deep level transient spectroscopy , 1981 .

[12]  C. R. Viswanathan,et al.  Interface‐state parameter determination by deep‐level transient spectroscopy , 1980 .

[13]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[14]  Didier Goguenheim,et al.  New insights on the electronic properties of the trivalent silicon defects at oxidized 〈100〉 silicon surfaces , 1990 .

[15]  Richard M. Swanson,et al.  Calculation of surface generation and recombination velocities at the Si‐SiO2 interface , 1985 .

[16]  Martin A. Green,et al.  24% efficient silicon solar cells , 1990 .

[17]  A. Goetzberger,et al.  Interface states in SiSiO2 interfaces , 1972 .