Electrochemical Thin Films at and above the Classical Limiting Current

We study a model electrochemical thin film at DC currents exceeding the classical diffusion-limited value. The mathematical problem involves the steady Poisson--Nernst--Planck equations for a binary electrolyte with nonlinear boundary conditions for reaction kinetics and Stern-layer capacitance, as well as an integral constraint on the number of anions. At the limiting current, we find a nested boundary-layer structure at the cathode, which is required by the reaction boundary condition. Above the limiting current, a depletion of anions generally characterizes the cathode side of the cell. In this regime, we derive leading-order asymptotic approximations for the (i) classical bulk space-charge layer and (ii) another nested highly charged boundary layer at the cathode. The former involves an exact solution to the Nernst--Planck equations for a single, unscreened ionic species, which may apply more generally to Faradaic conduction through very thin insulating films. By matching expansions, we derive current...

[1]  Gerbrand Ceder,et al.  Solid State Thin Film Lithium Microbatteries , 2003 .

[2]  M. Bazant,et al.  Asymptotic Analysis of Diffuse-Layer Effects on Time-Dependent Interfacial Kinetics , 2000, cond-mat/0006104.

[3]  John Newman,et al.  Double layer structure at the limiting current , 1967 .

[4]  Leonid Shtilman,et al.  Voltage against current curves of cation exchange membranes , 1979 .

[5]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[6]  P. Delahay,et al.  Double Layer and Electrode Kinetics , 1965 .

[7]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[8]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[9]  S. Dukhin,et al.  Electrokinetic phenomena of the second kind and their applications , 1991 .

[10]  J. Newman,et al.  THE POLARIZED, DIFFUSE DOUBLE LAYER , 1965 .

[11]  W. Nernst,et al.  Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[12]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[13]  Hiroyuki Hasebe,et al.  Laminated Thin Li-Ion Batteries Using a Liquid Electrolyte , 2002 .

[14]  Zaltzman,et al.  Electro-osmotically induced convection at a permselective membrane , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[16]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[17]  A. Macgillivray,et al.  Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .

[18]  Robijn Bruinsma,et al.  Theory of electrohydrodynamic instabilities in electrolytic cells , 1990 .

[19]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[20]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Hsueh-Chia Chang,et al.  Nonlinear Smoluchowski slip velocity and micro-vortex generation , 2002, Journal of Fluid Mechanics.

[22]  I. Rubinstein,et al.  ELECTRO-OSMOTIC SLIP OF THE SECOND KIND AND INSTABILITY IN CONCENTRATION POLARIZATION AT ELECTRODIALYSIS MEMBRANES , 2001 .