Meta-Analysis of Energy Scenario Studies: Example of Electricity Scenarios for Switzerland

We present a meta-analysis of long-term energy-system scenario studies. The meta-analysis comprises a qualitative taxonomy of modeling approaches and a quantitative decomposition of scenario results across heterogenous studies. The analysis is exemplified by technology-detailed scenario studies of the Swiss electricity system. In the decomposition approach, we assess the variability across scenario results by a principal component analysis, which provides a low-dimensional approximation of multidimensional data. Additionally, by means of a distance measure, the extremality of a scenario result is evaluated, and a minimal set of representative scenarios is determined with respect to a considered scenario result. The proposed methods contribute to the analysis of commonality of modeling approaches and of multidimensional results across heterogenous scenario studies.

[1]  Toshihiko Nakata,et al.  Energy-economic models and the environment , 2004 .

[2]  Leo Schrattenholzer,et al.  Estimating the costs of mitigating greenhouse gases , 1996 .

[3]  David O. Wood,et al.  Energy System Modeling and Forecasting , 1976 .

[4]  Ross Baldick,et al.  A strategic review of electricity systems models , 2010 .

[5]  Bing Han,et al.  Improving scenario discovery using orthogonal rotations , 2013, Environ. Model. Softw..

[6]  Yves Smeers,et al.  Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis , 2011, Oper. Res..

[7]  David G. Groves,et al.  A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios , 2006, Manag. Sci..

[8]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[9]  Christoph Schlenzig,et al.  PlaNet: ein entscheidungsunterstützendes System für die Energie- und Umweltplanung , 1997 .

[10]  Brian Vad Mathiesen,et al.  A review of computer tools for analysing the integration of renewable energy into various energy systems , 2010 .

[11]  Joseph R. Kasprzyk,et al.  Many objective robust decision making for complex environmental systems undergoing change , 2012, Environ. Model. Softw..

[12]  Yu Zhu,et al.  Scenario Simulation: Theory and methodology , 1996, Finance Stochastics.

[13]  Paul Geladi,et al.  Random error bias in principal component analysis. Part I. derivation of theoretical predictions , 1995 .

[14]  Peter Egger,et al.  Energiewende in der Schweiz , 2013 .

[15]  I. Kavrakoglu Energy policy: modelling and analysis , 1987 .

[16]  L. Bretschger,et al.  Economic Effects of a Nuclear Phase-Out Policy: A CGE Analysis , 2012 .

[17]  Robert J. Lempert,et al.  Evaluating Simulation-Derived Scenarios for Effective Decision Support , 2015 .

[18]  Rahul Pandey Energy policy modelling: agenda for developing countries , 2002 .

[19]  Frederic H. Murphy,et al.  Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets , 2005, Oper. Res..

[20]  Andy S. Kydes,et al.  Beyond the horizon: Recent directions in long-term energy modeling , 1995 .

[21]  Jiangjiang Wang,et al.  Review on multi-criteria decision analysis aid in sustainable energy decision-making , 2009 .

[22]  S. Iniyan,et al.  A review of energy models , 2006 .

[23]  Jarkko Isotalo,et al.  Matrix Tricks for Linear Statistical Models , 2011 .

[24]  Kristoffer Herland Hellton,et al.  The Impact of Measurement Error on Principal Component Analysis , 2014 .

[25]  Peter A. Shulman,et al.  Analysis of US Energy Scenarios , 2003 .

[26]  H. Turton,et al.  Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty , 2012 .

[27]  Lorna A. Greening,et al.  Design of coordinated energy and environmental policies: use of multi-criteria decision-making , 2004 .

[28]  R. Kannan,et al.  A Long-Term Electricity Dispatch Model with the TIMES Framework , 2013, Environmental Modeling & Assessment.

[29]  Céline Guivarch,et al.  Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation , 2012, Climatic Change.

[30]  Daniel Huppmann,et al.  Market power, fuel substitution and infrastructure - A large-scale equilibrium model of global energy markets , 2014 .

[31]  Evelina Trutnevyte,et al.  EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective , 2013 .

[32]  Brian Ó Gallachóir,et al.  Soft-linking of a power systems model to an energy systems model , 2012 .

[33]  Jan H. Kwakkel,et al.  Adaptive Robust Design under deep uncertainty , 2013 .

[34]  Michael Grubb,et al.  The Costs of Limiting Fossil-Fuel CO2 Emissions: A Survey and Analysis , 1993 .

[35]  E. Trutnevyte Linking governance storylines with the D-EXPANSE model to explore the power system transition pathways , 2014 .

[36]  Robert J. Lempert,et al.  Scenarios that illuminate vulnerabilities and robust responses , 2013, Climatic Change.

[37]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[38]  Ron Beaver,et al.  Structural comparison of the models in EMF 12 , 1993 .

[39]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[40]  Benjamin P. Bryant,et al.  Thinking Inside the Box , 2010 .

[41]  Marshall A. Wise,et al.  Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios? , 2011 .

[42]  Aqeel Ahmed Bazmi,et al.  Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review , 2011 .

[43]  Mark E. Borsuk,et al.  Discovering plausible energy and economic futures under global change using multidimensional scenario discovery , 2013, Environ. Model. Softw..

[44]  Warren B. Powell,et al.  SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy , 2012, INFORMS J. Comput..

[45]  Adam Hawkes,et al.  Energy systems modeling for twenty-first century energy challenges , 2014 .

[46]  M. Ventosa,et al.  Electricity market modeling trends , 2005 .

[47]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[48]  Olaf Tietje,et al.  Identification of a small reliable and efficient set of consistent scenarios , 2005, Eur. J. Oper. Res..

[49]  I. Jolliffe Principal Component Analysis , 2002 .

[50]  Nicolas Oliver Weidmann,et al.  Transformation strategies towards a sustainable Swiss energy system , 2013 .