Black-Box Hartree–Fock Solver by Tensor Numerical Methods

Abstract. The Hartree–Fock eigenvalue problem governed by the 3D integro-differential operator is the basic model in ab initio electronic structure calculations. Several years ago the idea to solve the Hartree–Fock equation by a fully 3D grid based numerical approach seemed to be a fantasy, and the tensor-structured methods did not exist. In fact, these methods evolved during the work on this challenging problem. In this paper, our recent results on the topic are outlined and the black-box Hartree–Fock solver by tensor numerical methods is presented. The approach is based on the rank-structured calculation of the core hamiltonian and of the two-electron integrals tensor using the problem adapted basis functions discretized on n×n×n$n\times n\times n$ 3D Cartesian grids. The arising 3D convolution transforms with the Newton kernel are replaced by a combination of 1D convolutions and 1D Hadamard and scalar products. The approach allows huge spatial grids, with n 3 ≃10 15 $n^3\simeq 10^{15}$ , yielding high resolution at low cost. The two-electron integrals are computed via multiple factorizations. The Laplacian Galerkin matrix can be computed “on-the-fly” using the quantized tensor approximation of O(logn)$O(\log n)$ complexity. The performance of the black-box solver in Matlab implementation is compatible with the benchmark packages based on the analytical (pre)evaluation of the multidimensional convolution integrals. We present ab initio Hartree–Fock calculations of the ground state energy for the amino acid molecules, and of the “energy bands” for the model examples of extended (quasi-periodic) systems.

[1]  William W. Hager,et al.  Multilevel domain decomposition for electronic structure calculations , 2007, J. Comput. Phys..

[2]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[3]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[4]  Boris N. Khoromskij,et al.  Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..

[5]  Boris N. Khoromskij,et al.  Superfast Fourier Transform Using QTT Approximation , 2012 .

[6]  B. Khoromskij Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .

[7]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[8]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[9]  Antje Winkel,et al.  Modern Quantum Chemistry , 2016 .

[10]  P. Pulay Improved SCF convergence acceleration , 1982 .

[11]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[12]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[13]  Vladimir A. Kazeev,et al.  Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..

[14]  Venera Khoromskaia,et al.  Numerical solution of the Hartree-Fock equation by multilevel tensor-structured methods , 2011 .

[15]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[16]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[17]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[18]  Stephen Wilson,et al.  Universal basis sets and Cholesky decomposition of the two-electron integral matrix , 1990 .

[19]  Pekka Pyykkö,et al.  Two-dimensional, fully numerical molecular calculations. IV: Hartree-Fock-Slater results on second-row diatomic molecules , 1985 .

[20]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[21]  Harry Yserentant,et al.  Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.

[22]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[23]  Boris N. Khoromskij,et al.  Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels , 2012, Comput. Phys. Commun..

[24]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[25]  Dmitry V. Savostyanov,et al.  Fast Revealing of Mode Ranks of Tensor in Canonical Form , 2009 .

[26]  G. Marchuk,et al.  Difference Methods and Their Extrapolations , 1983 .

[27]  Boris N. Khoromskij,et al.  Numerical Solution of the Hartree - Fock Equation in Multilevel Tensor-Structured Format , 2011, SIAM J. Sci. Comput..

[28]  Jan Almlöf,et al.  DIRECT METHODS IN ELECTRONIC STRUCTURE THEORY , 1995 .

[29]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[30]  Wolfgang Dahmen,et al.  Adaptive low rank wavelet methods and applications to two-electron Schrödinger equations , 2012 .

[31]  H. Yserentant Regularity and Approximability of Electronic Wave Functions , 2010 .

[32]  B. Khoromskij,et al.  DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .

[33]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[34]  Venera Khoromskaia Computation of the Hartree-Fock Exchange by the Tensor-Structured Methods , 2010, Comput. Methods Appl. Math..

[35]  Reinhold Schneider,et al.  Tensor-Structured Factorized Calculation of Two-Electron Integrals in a General Basis , 2013, SIAM J. Sci. Comput..

[36]  B. N. KHOROMSKIJ,et al.  Møller-Plesset ( MP 2 ) Energy Correction Using Grid-based Tensor Factorization of the Two-electron Integrals , 2013 .

[37]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[38]  Ivan P. Gavrilyuk,et al.  Data-sparse approximation to a class of operator-valued functions , 2004, Math. Comput..

[39]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[40]  Boris N. Khoromskij,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension , 2022 .

[41]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[42]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[43]  Boris N. Khoromskij,et al.  Fast and accurate 3D tensor calculation of the Fock operator in a general basis , 2012, Comput. Phys. Commun..

[44]  Markus Weimar Breaking the curse of dimensionality , 2015 .

[45]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[46]  M. Griebel,et al.  Tensor Product Multiscale Many-Particle Spaces with Finite-Order Weights for the Electronic Schrödinger Equation , 2010 .

[47]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[48]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[49]  N. Higham Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .