A model updating strategy of non‐linear vibrating structures

SUMMARY The objective of this paper is to present a model updating strategy of non-linear vibrating structures. Because modal analysis is no longer helpful in non-linear structural dynamics, a special attention is devoted to the features extracted from the proper orthogonal decomposition and one of its non-linear generalizations based on auto-associative neural networks. The efficiency of the proposed procedure is illustrated using simulated data from a three-dimensional portal frame. Copyright 2004 John Wiley & Sons, Ltd.

[1]  Ira B. Schwartz,et al.  Dynamics of Large Scale Coupled Structural/ Mechanical Systems: A Singular Perturbation/ Proper Orthogonal Decomposition Approach , 1999, SIAM J. Appl. Math..

[2]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[3]  G. Kerschen,et al.  PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION , 2002 .

[4]  Michael Link,et al.  Modelling and updating of local non-linearities using frequency response residuals , 2003 .

[5]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[6]  Gal Berkooz,et al.  Observations on the Proper Orthogonal Decomposition , 1992 .

[7]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[8]  Christophe Pierre,et al.  Normal modes of vibration for non-linear continuous systems , 1994 .

[9]  John E. Mottershead,et al.  Results Obtained by Minimising Natural-Frequency Errors and Using Physical Reasoning , 2003 .

[10]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[11]  F. M. Hemez,et al.  Test-Analysis Correlation and Finite Element Model Updating for Nonlinear Transient Dynamics , 1999 .

[12]  J. Z. Zhu,et al.  The finite element method , 1977 .

[13]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[14]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[15]  Charles R. Farrar,et al.  Novelty detection under changing environmental conditions , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[16]  Brian F. Feeny,et al.  Part 2: Proper Orthogonal Modal Modeling of a Frictionally Excited Beam , 2000 .

[17]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[18]  Gaëtan Kerschen,et al.  Identification of a continuous structure with a geometrical non-linearity. Part II: Proper orthogonal decomposition , 2003 .

[19]  A. Vakakis,et al.  PROPER ORTHOGONAL DECOMPOSITION (POD) OF A CLASS OF VIBROIMPACT OSCILLATIONS , 2001 .

[20]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[21]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[22]  J. Schultze,et al.  Application of non-linear system model updating using feature extraction and parameter effects analysis , 2000 .

[23]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[24]  Brian F. Feeny,et al.  Part 1: Dynamical Characterization of a Frictionally Excited Beam , 2000 .

[25]  M. Link,et al.  Updating of Analytical Models — Basic Procedures and Extensions , 1999 .

[26]  C. Pierre,et al.  A NEW GALERKIN-BASED APPROACH FOR ACCURATE NON-LINEAR NORMAL MODES THROUGH INVARIANT MANIFOLDS , 2002 .

[27]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[28]  T. K. Hasselman,et al.  Principal components analysis for nonlinear model correlation, updating and uncertainty evaluation , 1998 .

[29]  Roger Ghanem,et al.  Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration , 1998 .

[30]  B. Feeny,et al.  On the physical interpretation of proper orthogonal modes in vibrations , 1998 .

[31]  Joseph P. Cusumano,et al.  Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.