유사과제파악을 위한 검색 알고리즘의 개발에 관한 연구

국가적으로 그리고 각 연구기관에서는 투자의 효율성을 기하기 위하여 연구사업 선정과정에서 데이터베이스로부터 중복과제 혹은 유사과제를 검색하는 과정을 거친다. 최근 부얼리언 기반의 키워드 매칭 검색알고리즘의 발전 및 이를 채택한 검색엔진의 개발로 인하여 검색의 정확도가 많이 향상되었지만, 사용자가 입력하는 제한된 수의 키워드들에 의한 검색은 유사과제 파악과 우선순위의 결정에 어려움이 있다. 본 연구에서는 제안된 과제의 문서를 분석하여 다수의 색인어들을 추출하고, 이들에게 가중치를 부여한 후, 기존의 문서들과 비교하여 유사과제를 찾아내는 문서단위의 검색 알고리즘을 제안한다. 구체적으로 벡터공간검색(Vector-Space Retrieval)모델의 한 종류인 TFIDF(Term Frequency Inverse document Frequency)를 기본 구조로 채택한다. 또한 개발되는 알고리즘에는 연구과제 제안문서의 구조에 적합한 속성별 가중치(feature weighting)를 반영하고 검색속도의 향상을 위하여 K-최근접 문서(KNN: K-Nearest Neighbors) 기법도 반영한 알고리즘을 제시한다. 실험을 위하여 실제 연구제안 문서와 구조가 동일한 기존의 보고서를 사용하였는데, KISTI에서 운영하는 과학기술정보포털서비스인 NDSL에서 이미 분류해 놓은 4분야의 1,000 개 연구 보고서 문서를 발췌하여 실험을 하였다.