Using the Markov chain Monte Carlo method to study the physical properties of GeV-TeV BL Lac objects

We fit the spectral energy distributions (SEDs) of 46 GeV-TeV BLLac objects in the frame of leptonic one-zone synchrotron self-Compton (SSC) model and investigate the physical properties of these objects. We use the Markov chain Monte Carlo (MCMC) method to obtain the basic parameters, such as magnetic field (B), the break energy of the relativistic electron distribution (gamma(b)'), and the electron energy spectral index. Based on the modeling results, we support the following scenarios for GeV-TeV BL Lac objects. (1) Some sources have large Doppler factors, implying other radiation mechanism should be considered. (2) Compared with flat spectrum quasars (FSRQs), GeV-TeV BL Lac objects have weaker magnetic fields and larger Doppler factors, which cause the ineffective cooling and shift the SEDs to higher bands. Their jet powers are around 4.0 x 10(45) erg s(-1), compared with radiation power, 5.0 x 10(42) erg s(-1), indicating that only a small fraction of jet power is transformed into the emission power. (3) For some BL Lacs with large Doppler factors, their jet components could have two substructures, e.g., the fast core and the slow sheath. For most GeV-TeV BL Lacs, Kelvin-Helmholtz instabilities are suppressed by their higher magnetic fields, leading to micro-variability or intro-day variability in the optical bands. (4) Combined with a sample of FSRQs, an anti-correlation between the peak luminosity, L-pk, and the peak frequency, nu(pk), is obtained, favoring the blazar sequence scenario. In addition, an anti-correlation between the jet power, P-jet, and the break Lorentz factor, gamma(b), also supports the blazar sequence.

[1]  P. Giommi,et al.  THE SPECTRAL ENERGY DISTRIBUTION OF FERMI BRIGHT BLAZARS , 2009, The Astrophysical Journal.

[2]  D. Yan,et al.  Constraining the red shifts of TeV BL Lac objects , 2017, 1709.03800.

[3]  L. Chen On the Origin of the Hard X-Ray Excess of High-Synchrotron-Peaked BL Lac Object Mrk 421 , 2017, 1706.04611.

[4]  H. Zhang,et al.  The physical properties of Fermi TeV BL Lac objects’ jets , 2016, 1609.05704.

[5]  J. Mao,et al.  What determines the observational differences of blazars? , 2016, 1607.05000.

[6]  Y. G. Zheng,et al.  Bethe-Heitler cascades as a plausible origin of hard spectra in distant TeV blazars , 2016, 1607.03898.

[7]  Yasuyuki T. Tanaka,et al.  BARYON LOADING EFFICIENCY AND PARTICLE ACCELERATION EFFICIENCY OF RELATIVISTIC JETS: CASES FOR LOW LUMINOSITY BL LACS , 2016, 1603.07623.

[8]  J. Mao,et al.  A MIXTURE EVOLUTION SCENARIO OF THE AGN RADIO LUMINOSITY FUNCTION , 2016, 1602.04298.

[9]  Shuang-Nan Zhang,et al.  Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime , 2015, 1511.00122.

[10]  W. Deng,et al.  EFFICIENT PRODUCTION OF HIGH-ENERGY NONTHERMAL PARTICLES DURING MAGNETIC RECONNECTION IN A MAGNETICALLY DOMINATED ION–ELECTRON PLASMA , 2015, 1511.01434.

[11]  Shuang-Nan Zhang,et al.  Parameter constraints in a near-equipartition model with multifrequency NuSTAR, Swift, and Fermi-LAT data from 3C 279 , 2015, 1509.04945.

[12]  K. Asano,et al.  Stochastic acceleration model of gamma-ray burst with decaying turbulence , 2015, 1509.04477.

[13]  B. Metzger,et al.  The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath , 2015, 1501.00361.

[14]  M. Gurwell,et al.  SIX YEARS OF FERMI-LAT AND MULTI-WAVELENGTH MONITORING OF THE BROAD-LINE RADIO GALAXY 3C 120: JET DISSIPATION AT SUB-PARSEC SCALES FROM THE CENTRAL ENGINE , 2014, 1412.3903.

[15]  P. Edwards,et al.  FIRST-EPOCH VLBA IMAGING OF 20 NEW TeV BLAZARS , 2014, 1410.0730.

[16]  L. Chen,et al.  CONSTRAINTS ON THE MINIMUM ELECTRON LORENTZ FACTOR AND MATTER CONTENT OF JETS FOR A SAMPLE OF BRIGHT FERMI BLAZARS , 2014, 1409.3233.

[17]  William Daughton,et al.  Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. , 2014, Physical review letters.

[18]  I. Paris,et al.  Spectral evolution in gamma-ray bursts: predictions of the internal shock model and comparison to observations , 2014, 1404.4577.

[19]  D. Xiong,et al.  Intrinsic γ-ray luminosity, black hole mass, jet and accretion in Fermi blazars , 2014, 1404.3556.

[20]  Yasuyuki T. Tanaka,et al.  EXTREME BLAZARS STUDIED WITH FERMI-LAT AND SUZAKU: 1ES 0347−121 AND BLAZAR CANDIDATE HESS J1943+213 , 2014, 1404.3727.

[21]  Li Zhang,et al.  The physical properties of Fermi BL Lac objects jets , 2014, 1401.5552.

[22]  Jiancheng Wang,et al.  THE HADRONIC ORIGIN OF THE HARD GAMMA-RAY SPECTRUM FROM BLAZAR 1ES 1101-232 , 2014, 1401.3970.

[23]  G. Cao,et al.  On the location of the γ-ray emission region for 21 flat spectrum radio quasars with quasi-simultaneous observations , 2013, 1309.3206.

[24]  Yasuyuki T. Tanaka,et al.  Fermi LARGE AREA TELESCOPE DETECTION OF TWO VERY-HIGH-ENERGY (E > 100 GeV) γ-RAY PHOTONS FROM THE z = 1.1 BLAZAR PKS 0426−380 , 2013, 1308.0595.

[25]  A. Prakash,et al.  LEPTONIC AND HADRONIC MODELING OF FERMI-DETECTED BLAZARS , 2013, 1304.0605.

[26]  Q. Yuan,et al.  EMITTING ELECTRONS SPECTRA AND ACCELERATION PROCESSES IN THE JET OF Mrk 421: FROM THE LOW STATE TO THE GIANT FLARE STATE , 2013, 1301.6476.

[27]  J. Finke COMPTON DOMINANCE AND THE BLAZAR SEQUENCE , 2012, 1212.0869.

[28]  A. Falcone,et al.  MULTIWAVELENGTH OBSERVATIONS OF THE AGN 1ES 0414+009 WITH VERITAS, FERMI-LAT, SWIFT-XRT, AND MDM , 2012, 1206.4080.

[29]  S. Ansoldi,et al.  EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501 , 2012, 1205.5237.

[30]  T. Weekes,et al.  DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY γ-RAY EMISSION FROM THE BLAZAR RBS 0413 , 2012, 1204.0865.

[31]  Munchen,et al.  Discovery of VHEγ-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations , 2012, Astronomy & Astrophysics.

[32]  Tenerife,et al.  Discovery of VHE gamma-ray emission from the BL Lac object B3 2247+381 with the MAGIC telescopes , 2012, 1201.2634.

[33]  G. Bonnoli,et al.  Estimating the redshift of PKS 0447−439 through its GeV–TeV emission , 2011, 1110.4038.

[34]  India.,et al.  Quasi-simultaneous two-band optical variability of the blazars 1ES 1959+650 and 1ES 2344+514 , 2011, 1112.3125.

[35]  Ratan,et al.  MAGIC and Multi-Wavelength Observations of three HBLs in 2008 , 2011, 1110.6341.

[36]  P. Giommi,et al.  A simplified view of blazars: clearing the fog around long‐standing selection effects , 2011, 1110.4706.

[37]  E. Liang,et al.  RADIATION MECHANISMS AND PHYSICAL PROPERTIES OF GeV–TeV BL Lac OBJECTS , 2011, 1108.0607.

[38]  T. Weekes,et al.  MULTIWAVELENGTH OBSERVATIONS OF THE VERY HIGH ENERGY BLAZAR 1ES 2344+514 , 2011, 1106.4594.

[39]  L. Chen,et al.  IMPLICATIONS FOR THE BLAZAR SEQUENCE AND INVERSE COMPTON MODELS FROM FERMI BRIGHT BLAZARS , 2011, 1105.0716.

[40]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[41]  S. Ansoldi,et al.  THE ENVIRONMENT AND DISTRIBUTION OF EMITTING ELECTRONS AS A FUNCTION OF SOURCE ACTIVITY IN MARKARIAN 421 , 2011, 1103.0909.

[42]  Brian D. Metzger,et al.  Radio transients from stellar tidal disruption by massive black holes , 2011, 1102.1429.

[43]  C. Fryer,et al.  MODELING THE MULTI-WAVELENGTH EMISSION OF THE SHELL-TYPE SUPERNOVA REMNANT RX J1713.7−3946 , 2010, 1011.0145.

[44]  G. Ghisellini,et al.  Compton rockets and the minimum power of relativistic jets , 2010, 1008.1982.

[45]  M. Boettcher Models for the Spectral Energy Distributions and Variability of Blazars , 2010, 1006.5048.

[46]  P. Giommi,et al.  The 2nd edition of the Roma-BZCAT Multi-frequency Catalogue of Blazars , 2010, 1006.0922.

[47]  D. Thompson,et al.  THE DISCOVERY OF γ-RAY EMISSION FROM THE BLAZAR RGB J0710+591 , 2010, 1005.0041.

[48]  S. Razzaque,et al.  MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST , 2009, 0905.1115.

[49]  E. al.,et al.  SIMULTANEOUS MULTIWAVELENGTH OBSERVATION OF Mkn 501 IN A LOW STATE IN 2006 , 2009, 0910.2093.

[50]  G. Ghisellini,et al.  General physical properties of bright Fermi blazars , 2009, 0909.0932.

[51]  E. al.,et al.  Discovery of Very High Energy gamma-rays from the blazar S5 0716+714 , 2009, 0907.2386.

[52]  L. A. Antonelli,et al.  DISCOVERY OF VERY HIGH ENERGY γ-RAYS FROM THE BLAZAR S5 0716+714 , 2009 .

[53]  A. R. Bazer-Bachi,et al.  Simultaneous multiwavelength observations of the second exceptional gamma-ray flare of PKS 2155-304 in July 2006 , 2009, 0906.2002.

[54]  T. Weekes,et al.  DISCOVERY OF VERY HIGH ENERGY GAMMA-RAY RADIATION FROM THE BL LAC 1ES 0806+524 , 2008, 0812.0978.

[55]  S. Razzaque,et al.  THE STELLAR CONTRIBUTION TO THE EXTRAGALACTIC BACKGROUND LIGHT AND ABSORPTION OF HIGH-ENERGY GAMMA RAYS , 2008, 0807.4294.

[56]  C. Dermer,et al.  Synchrotron Self-Compton Analysis of TeV X-Ray-Selected BL Lacertae Objects , 2008, 0802.1529.

[57]  G. Ghisellini,et al.  Rapid variability in TeV blazars: the case of PKS 2155—304 , 2008, 0801.2569.

[58]  G. Ghisellini,et al.  Spine–sheath layer radiative interplay in subparsec‐scale jets and the TeV emission from M87 , 2008, 0801.0593.

[59]  G. Ghisellini,et al.  The power of blazar jets , 2007, 0711.4112.

[60]  R. Wagner Synoptic studies of 17 blazars detected in very high-energy γ-rays , 2007, 0711.3025.

[61]  E. Pian,et al.  Simultaneous X-ray and optical observations of S5 0716+714 after the outburst of March 2004 , 2006, astro-ph/0604600.

[62]  M. Tornikoski,et al.  Spectral energy distributions of a large sample of BL Lacertae objects , 2005, astro-ph/0509045.

[63]  T. Weekes,et al.  A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution , 2005, astro-ph/0505325.

[64]  P. Giommi,et al.  The Sedentary Survey of Extreme High Energy Peaked BL Lacs. II. The Catalog and Spectral Properties , 2004, astro-ph/0411093.

[65]  G. Henri,et al.  TeV Blazar Gamma-Ray Emission Produced by a Cooling Pileup Particle Energy Distribution Function , 2004, astro-ph/0408218.

[66]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[67]  M. Georganopoulos,et al.  Decelerating Flows in TeV Blazars: A Resolution to the BL Lacertae-FR I Unification Problem , 2003, astro-ph/0306210.

[68]  H. T. Liu,et al.  The masses of central supermassive black holes and the variability time-scales in gamma-ray loud blazars , 2003 .

[69]  P. Giommi,et al.  What Types of Jets Does Nature Make? A New Population of Radio Quasars , 2003, astro-ph/0301227.

[70]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[71]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[72]  Xue-bing Wu,et al.  Supermassive black hole masses of AGNs with elliptical hosts , 2002, astro-ph/0203158.

[73]  P. Giommi,et al.  BL Lacertae: Complex spectral variability and rapid synchrotron flare detected with BeppoSAX , 2002, astro-ph/0201307.

[74]  University College Dublin,et al.  Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-Ray/TeV Correlated Variability , 2007, 0710.4138.

[75]  C. Dermer,et al.  An Evolutionary Scenario for Blazar Unification , 2001, astro-ph/0106395.

[76]  E. Palazzi,et al.  Theoretical Implications from the Spectral Evolution of Markarian 501 Observed with BeppoSAX , 2001 .

[77]  C. Urry,et al.  The X-Ray Jet of PKS 0637–752: Inverse Compton Radiation from the Cosmic Microwave Background? , 2000, astro-ph/0007441.

[78]  G. E. Romero,et al.  OPTICAL MICROVARIABILITY OF SOUTHERN AGNS , 1999 .

[79]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[80]  A. Comastri,et al.  A theoretical unifying scheme for gamma-ray bright blazars , 1998, astro-ph/9807317.

[81]  Italy.,et al.  A unifying view of the spectral energy distributions of blazars , 1998, astro-ph/9804103.

[82]  T. Takahashi,et al.  ASCA Observations of Blazars and Multiband Analysis , 1998, astro-ph/9804031.

[83]  Michael R. Garcia,et al.  � 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. ADVECTION-DOMINATED ACCRETION AND BLACK HOLE EVENT HORIZONS , 1996 .

[84]  G. E. Romero Fine-scale structure in relativistic jets and rapid variability in blazars , 1995 .

[85]  P. Padovani,et al.  Altered luminosity functions for relativistically beamed objects. II, Distribution of Lorentz factors and parent populations with complex luminosity functions , 1991 .