On a conjecture by Pierre Cartier about a group of associators

In Cartier (Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents. Sem. BOURBAKI, 53eme 2000–2001, no. 885), Pierre Cartier conjectured that for any non-commutative formal power series Φ on X={x 0,x 1} with coefficients in a \(\mathbb{Q}\)-extension, A, subjected to some suitable conditions, there exists a unique algebra homomorphism φ from the \(\mathbb{Q}\)-algebra generated by the convergent polyzetas to A such that Φ is computed from the Φ KZ Drinfel’d associator by applying φ to each coefficient. We prove that φ exists and that it is a free Lie exponential map over X. Moreover, we give a complete description of the kernel of ζ and draw some consequences about the arithmetical nature of the Euler constant and about an algebraic structure of the polyzetas.

[1]  Michel Petitot,et al.  Combinatorial aspects of polylogarithms and Euler-Zagier sums. (Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier.) , 1999 .

[2]  Arjan van der Schaft,et al.  Algebraic and Geometric Methods in Nonlinear Control Theory , 1986 .

[3]  Doubles mélanges des polylogarithmes multiples aux racines de l’unité , 2002, math/0202142.

[4]  U MichaelE.Hoffman The Algebra of Multiple Harmonic Series , 1997 .

[5]  Christophe Reutenauer,et al.  Un critère de rationalité provenant de la géométrie non commutative , 1997 .

[6]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[7]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[8]  Michaël Bigotte Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés , 2000 .

[9]  Nicolas Bourbaki,et al.  Functions of a Real Variable , 2003 .

[10]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[11]  G. Jacob,et al.  Input/Output behaviour of nonlinear analytic systems: Rational approximations, nilpotent structural approximations , 1991 .

[12]  C. Reutenauer The Local Realization of Generating Series of Finite Lie Rank , 1986 .

[13]  A. Pressley,et al.  A guide to quantum groups , 1994 .

[14]  Jun Murakami,et al.  Kontsevich’s integral for the Kauffman polynomial , 1996, Nagoya Mathematical Journal.

[15]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[16]  K. Ihara,et al.  Derivation and double shuffle relations for multiple zeta values , 2006, Compositio Mathematica.

[17]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[18]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[19]  Joris van der Hoeven,et al.  Shuffle algebra and polylogarithms , 2000, Discret. Math..

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Pierre Cartier,et al.  Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents , 2001 .

[22]  G. Hochschild,et al.  The Structure of Lie Groups. , 1967 .

[23]  Jean Ecalle,et al.  ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan , 2003 .

[24]  Paolo Aluffi,et al.  Algebra: Chapter 0 , 2009 .

[25]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[26]  Gérard Jacob,et al.  Symbolic integration of meromorphic differential systems via Dirichlet functions , 2000, Discret. Math..

[27]  V. Drinfeld,et al.  Quasi Hopf algebras , 1989 .

[28]  Michel Waldschmidt Hopf Algebras and Transcendental Numbers , 2005 .

[29]  Hoang Ngoc Minh Summations of polylogarithms via evaluation transform , 1996 .

[30]  Christophe Tollu,et al.  Sweedler's duals and Schützenberger's calculus , 2007, ArXiv.

[31]  L. Boutet de Monvel Remark on divergent multizeta series (Microlocal Analysis and Asymptotic Analysis) , 2004 .

[32]  Serge Levendorskiî,et al.  Quantum groupA∞ , 1991 .

[33]  Hoang Ngoc Minh Dirichlet functions of n order and t parameter (French) , 1998 .

[34]  Hoang Ngoc Minh,et al.  Algorithmic and combinatoric aspects of multiple harmonic sums , 2005 .

[35]  R. Ree,et al.  Lie Elements and an Algebra Associated With Shuffles , 1958 .

[36]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[37]  Pierre Cartier,et al.  Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre , 1997 .

[38]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[39]  Michael E. Hoffman,et al.  The Algebra of Multiple Harmonic Series , 1997 .