Mitiq: A software package for error mitigation on noisy quantum computers

We introduce an open-source software package for error mitigation in quantum computation using zero-noise extrapolation. Error mitigation techniques improve computational performance (with respect to noise) with minimal overhead in quantum resources by relying on a mixture of quantum sampling and classical post-processing techniques. Our error mitigation package interfaces with multiple quantum computing software stacks, and we demonstrate improved performance on IBM and Rigetti superconducting quantum processors as well as noisy simulators. We describe the library using code snippets to demonstrate usage and discuss features and contribution guidelines.

[1]  Lorenza Viola,et al.  Dynamical control of qubit coherence: Random versus deterministic schemes (20 pages) , 2005 .

[2]  Robert S. Smith,et al.  A quantum-classical cloud platform optimized for variational hybrid algorithms , 2020, ArXiv.

[3]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[4]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[5]  Kevin J. Sung,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[6]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[7]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[8]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[9]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[10]  S. Gray,et al.  Recovering noise-free quantum observables , 2018, Physical Review A.

[11]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[12]  Xiao Yuan,et al.  Practical quantum error mitigation for analog quantum simulation , 2020, 2001.04891.

[13]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[14]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[15]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[16]  Ryan LaRose,et al.  Digital zero noise extrapolation for quantum error mitigation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[17]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[18]  Jiayin Chen,et al.  Software tools for quantum control: Improving quantum computer performance through noise and error suppression , 2020 .

[19]  Yao Lu,et al.  Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.

[20]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[21]  Zhenyu Cai Multi-exponential Error Extrapolation and Combining Error Mitigation Techniques for NISQ Applications , 2020 .

[22]  H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields , 2007 .

[23]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[24]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[25]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[26]  Daniel J. Egger,et al.  Qiskit pulse: programming quantum computers through the cloud with pulses , 2020, Quantum Science and Technology.

[27]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[28]  Carlo Cafaro,et al.  Approximate quantum error correction for generalized amplitude-damping errors , 2013, 1308.4582.

[29]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[30]  Daniel A. Lidar,et al.  Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits. , 2018, Physical review letters.

[31]  Christophe Vuillot,et al.  Universal bound on the cardinality of local hidden variables in networks , 2016, Quantum Inf. Comput..

[32]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[33]  Margaret Martonosi,et al.  Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[34]  B. Nachman,et al.  Error detection on quantum computers improving the accuracy of chemical calculations , 2019, Physical Review A.

[35]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[36]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[37]  Liang Jiang,et al.  Optimal approximate quantum error correction for quantum metrology , 2019 .

[38]  Xiaobo Zhu,et al.  Experimental verification of five-qubit quantum error correction with superconducting qubits , 2019 .