Social Mechanics: An Empirically Grounded Science of Social Media

What will social media sites of tomorrow look like? What behaviors will their interfaces enable? A major challenge for designing new sites that allow a broader range of user actions is the difficulty of extrapolating from experience with current sites without first distinguishing correlations from underlying causal mechanisms. The growing availability of data on user activities provides new opportunities to uncover correlations among user activity, contributed content and the structure of links among users. However, such correlations do not necessarily translate into predictive models. Instead, empirically grounded mechanistic models provide a stronger basis for establishing causal mechanisms and discovering the underlying statistical laws governing social behavior. We describe a statistical physics-based framework for modeling and analyzing social media and illustrate its application to the problems of prediction and inference. We hope these examples will inspire the research community to explore these methods to look for empirically valid causal mechanisms for the observed corre-

[1]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[2]  M. Mézard,et al.  Mean-field theory of randomly frustrated systems with finite connectivity , 1987 .

[3]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[4]  Richard M. Karp,et al.  Algorithms for graph partitioning on the planted partition model , 1999, Random Struct. Algorithms.

[5]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[6]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[7]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[8]  Richard M. Karp,et al.  Algorithms for graph partitioning on the planted partition model , 2001, Random Struct. Algorithms.

[9]  Y. Moreno,et al.  Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.

[10]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[11]  Raymond J. Mooney,et al.  A probabilistic framework for semi-supervised clustering , 2004, KDD.

[12]  P. E. Kopp,et al.  Superspreading and the effect of individual variation on disease emergence , 2005, Nature.

[13]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Eytan Domany,et al.  Semi-Supervised Learning -- A Statistical Physics Approach , 2006, ArXiv.

[15]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[16]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[17]  S. Ellner,et al.  Dynamic Models in Biology , 2006 .

[18]  Aram Galstyan,et al.  Cascading dynamics in modular networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Kristina Lerman,et al.  Social Information Processing in Social News Aggregation , 2007, ArXiv.

[20]  Kristina Lerman,et al.  Social Information Processing in News Aggregation , 2007, IEEE Internet Computing.

[21]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[22]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[23]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[24]  Kristina Lerman,et al.  Social Networks and Social Information Filtering on Digg , 2006, ICWSM.

[25]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[26]  Dennis M. Wilkinson,et al.  Strong regularities in online peer production , 2008, EC '08.

[27]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, Machine Learning.

[28]  M. Newman,et al.  Robustness of community structure in networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Michele Leone,et al.  (Un)detectable cluster structure in sparse networks. , 2007, Physical review letters.

[30]  Sergey N. Dorogovtsev,et al.  Organization of modular networks , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  James P Gleeson,et al.  Cascades on correlated and modular random networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[33]  Christos Faloutsos,et al.  Epidemic thresholds in real networks , 2008, TSEC.

[34]  Armen E. Allahverdyan,et al.  Community detection with and without prior information , 2009, ArXiv.

[35]  Esteban Moro,et al.  Impact of human activity patterns on the dynamics of information diffusion. , 2009, Physical review letters.

[36]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[37]  Tad Hogg,et al.  Stochastic Models of User-Contributory Web Sites , 2009, ICWSM.

[38]  N. Stanietsky,et al.  The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity , 2009, Proceedings of the National Academy of Sciences.

[39]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[40]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[41]  Tad Hogg,et al.  Diversity of User Activity and Content Quality in Online Communities , 2009, ICWSM.

[42]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[43]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[44]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[45]  Tad Hogg,et al.  Using a model of social dynamics to predict popularity of news , 2010, WWW '10.

[46]  Kristina Lerman,et al.  Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks , 2010, ICWSM.

[47]  Kristina Lerman,et al.  Predicting Influential Users in Online Social Networks , 2010, ArXiv.

[48]  F. Radicchi,et al.  Statistical significance of communities in networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Claudio Castellano,et al.  Thresholds for epidemic spreading in networks , 2010, Physical review letters.

[50]  Kristina Lerman,et al.  What Stops Social Epidemics? , 2011, ICWSM.

[51]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[52]  Kristina Lerman,et al.  Non-Conservative Diffusion and its Application to Social Network Analysis , 2011, ArXiv.

[53]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[54]  Kristina Lerman,et al.  A framework for quantitative analysis of cascades on networks , 2010, WSDM '11.