Enhancing electrical conductivity and electron field emission properties of ultrananocrystalline diamond films by copper ion implantation and annealing

Copper ion implantation and subsequent annealing at 600 °C achieved high electrical conductivity of 95.0 (Ωcm)−1 for ultrananocrystalline diamond (UNCD) films with carrier concentration of 2.8 × 1018 cm−2 and mobility of 6.8 × 102 cm2/V s. Transmission electron microscopy examinations reveal that the implanted Cu ions first formed Cu nanoclusters in UNCD films, which induced the formation of nanographitic grain boundary phases during annealing process. From current imaging tunneling spectroscopy and local current-voltage curves of scanning tunneling spectroscopic measurements, it is observed that the electrons are dominantly emitted from the grain boundaries. Consequently, the nanographitic phases presence in the grain boundaries formed conduction channels for efficient electron transport, ensuing in excellent electron field emission (EFE) properties for copper ion implanted/annealed UNCD films with low turn-on field of 4.80 V/μm and high EFE current density of 3.60 mA/cm2 at an applied field of 8.0 V/μm.

[1]  S. Koizumi,et al.  Fabrication of a diamond field emitter array , 1994 .

[2]  R. Chang,et al.  Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas , 1997 .

[3]  D. Gruen,et al.  Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond , 2002 .

[4]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[5]  Hisato Yamaguchi,et al.  Electron emission from conduction band of diamond with negative electron affinity , 2009 .

[6]  Yung-fu Chen Monte Carlo simulation of photoelectron angular distribution , 1997 .

[7]  H. J. Liu,et al.  n-type conductivity and phase transition in ultrananocrystalline diamond films by oxygen ion implantation and annealing , 2011 .

[8]  J. C. Twichell,et al.  A new surface electron-emission mechanism in diamond cathodes , 1998, Nature.

[9]  Dieter M. Gruen,et al.  Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions , 1994 .

[10]  Strong room-temperature ferromagnetism in Cu-implanted nonpolar GaN films , 2009 .

[11]  I. Lin,et al.  Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films , 2013 .

[12]  L. Curtiss,et al.  Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films , 2001 .

[13]  I. Lin,et al.  Fabrication of free-standing highly conducting ultrananocrystalline diamond films with enhanced electron field emission properties , 2012 .

[14]  I. Lin,et al.  Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma , 2012 .

[15]  A. Evlyukhin,et al.  Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation , 2013 .

[16]  V. Popok ION IMPLANTATION OF POLYMERS: FORMATION OF NANOPARTICULATE MATERIALS , 2012 .

[17]  E. Blank,et al.  Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films , 1998 .

[18]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[19]  D. Gruen,et al.  Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films , 2007 .

[20]  Lili Jiang,et al.  Controlled Synthesis of Large‐Scale, Uniform, Vertically Standing Graphene for High‐Performance Field Emitters , 2013, Advanced materials.

[21]  Gehan A. J. Amaratunga,et al.  Nitrogen containing hydrogenated amorphous carbon for thin‐film field emission cathodes , 1996 .

[22]  I. Lin,et al.  Structural and electrical properties of conducting diamond nanowires. , 2013, ACS applied materials & interfaces.

[23]  Ilia Platzman,et al.  Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions , 2008 .

[24]  J. Ye,et al.  Phosphorus ion implantation and annealing induced n-type conductivity and microstructure evolution in ultrananocrystalline diamond films , 2011 .

[25]  Yung-chen Lin,et al.  Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature , 2011 .

[26]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[27]  J. Robertson,et al.  Role of sp2 phase in field emission from nanostructured carbons , 2001 .

[28]  Prawer,et al.  Ion-beam-induced transformation of diamond. , 1995, Physical review. B, Condensed matter.

[29]  A. Cola,et al.  Optical and electrical properties of polycarbonate layers implanted by high energy Cu ions , 2013 .

[30]  J. Baek,et al.  Room-temperature ferromagnetism of Cu-implanted GaN , 2007 .

[31]  Bourdon,et al.  Electron-energy-loss characterization of laser-deposited a-C, a-C:H, and diamond films. , 1993, Physical review. B, Condensed matter.

[32]  Zhili Sun,et al.  UV Raman characteristics of nanocrystalline diamond films with different grain size , 2000 .

[33]  R. Chang,et al.  The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond , 2002 .

[34]  D. Gruen,et al.  Bonding structure in nitrogen doped ultrananocrystalline diamond , 2003 .

[35]  R. Kalish Doping of diamond , 1999 .

[36]  Shigeru Suzuki,et al.  Native oxidation of ultra high purity Cu bulk and thin films , 2006 .

[37]  M. Geis,et al.  Field emission at 10Vcm−1 with surface emission cathodes on negative-electron-affinity insulators , 2005 .

[38]  J. Robertson,et al.  Origin of the 1 1 5 0 − cm − 1 Raman mode in nanocrystalline diamond , 2001 .

[39]  R. Vajtai,et al.  Ion irradiation induced structural modifications in diamond nanoparticles , 2006 .

[40]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.