Discourse in Statistical Machine Translation : A Survey and a Case Study

Current approaches to statistical machine translation assume that sentences in a text are independent, ignoring the property of connectedness present in virtually all discourse. We provide an extensive overview of the literature about statistical machine translation that can be related to discourse phenomena and present a detailed investigation and discussion of existing research efforts on a particular discourse-related problem, the translation of anaphoric pronouns. Comparing different approaches to discourse in statistical machine translation allows us to identify fundamental problems and draw conclusions from an overarching perspective.

[1]  Nianwen Xue,et al.  CoNLL-2011 Shared Task: Modeling Unrestricted Coreference in OntoNotes , 2011, CoNLL Shared Task.

[2]  Philipp Koehn,et al.  Aiding Pronoun Translation with Co-Reference Resolution , 2010, WMT@ACL.

[3]  Benoît Sagot,et al.  The Lefff 2 syntactic lexicon for French: architecture, acquisition, use , 2006, LREC.

[4]  Vincent Ng,et al.  Supervised Noun Phrase Coreference Research: The First Fifteen Years , 2010, ACL.

[5]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[6]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[7]  Lucia Specia,et al.  n-Best Reranking for the Efficient Integration of Word Sense Disambiguation and Statistical Machine Translation , 2008, CICLing.

[8]  Katrin Kirchhoff,et al.  Graph-based Learning for Statistical Machine Translation , 2009, NAACL.

[9]  Chunyu Kit,et al.  Extending Machine Translation Evaluation Metrics with Lexical Cohesion to Document Level , 2012, EMNLP.

[10]  Ted Sanders,et al.  Cohesion and Coherence: Linguistic Approaches , 2006 .

[11]  Andrei Popescu-Belis,et al.  Disambiguating discourse connectives using parallel corpora: senses vs. translations , 2011 .

[12]  Liane Guillou Improving Pronoun Translation for Statistical Machine Translation (SMT) , 2011 .

[13]  Jingbo Zhu,et al.  Document-level Consistency Verification in Machine Translation , 2011, MTSUMMIT.

[14]  Andrei Popescu-Belis,et al.  Machine Translation of Labeled Discourse Connectives , 2012, AMTA.

[15]  Richard Evans,et al.  Applying Machine Learning Toward an Automatic Classification of It , 2001, Lit. Linguistic Comput..

[16]  David Yarowsky,et al.  One Sense Per Discourse , 1992, HLT.

[17]  Bonnie L. Webber,et al.  Discourse structure and language technology , 2011, Natural Language Engineering.

[18]  Daniel Jurafsky,et al.  Towards a Literary Machine Translation: The Role of Referential Cohesion , 2012, CLfL@NAACL-HLT.

[19]  Victoria Arranz,et al.  Document-Level Automatic MT Evaluation based on Discourse Representations , 2010, WMT@ACL.

[20]  Liane Guillou,et al.  Improving Pronoun Translation for Statistical Machine Translation , 2012, EACL.

[21]  Matthew G. Snover,et al.  A Study of Translation Edit Rate with Targeted Human Annotation , 2006, AMTA.

[22]  Mauro Cettolo,et al.  WIT3: Web Inventory of Transcribed and Translated Talks , 2012, EAMT.

[23]  Jörg Tiedemann,et al.  Context Adaptation in Statistical Machine Translation Using Models with Exponentially Decaying Cache , 2010, ACL 2010.

[24]  Sanjeev Khudanpur,et al.  Cross-lingual latent semantic analysis for language modeling , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[25]  Alon Lavie,et al.  METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments , 2005, IEEvaluation@ACL.

[26]  Jean Carletta,et al.  Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization , 2005, ACL 2005.

[27]  Andrei Popescu-Belis,et al.  Multilingual Annotation and Disambiguation of Discourse Connectives for Machine Translation , 2011, SIGDIAL Conference.

[28]  Vladimir Eidelman,et al.  Topic Models for Dynamic Translation Model Adaptation , 2012, ACL.

[29]  Ruslan Mitkov,et al.  Introduction: Special Issue on Anaphora Resolution in Machine Translation and Multilingual NLP , 1999, Machine Translation.

[30]  Tanja Schultz,et al.  Bilingual LSA-based adaptation for statistical machine translation , 2007, Machine Translation.

[31]  David Chiang,et al.  Hierarchical Phrase-Based Translation , 2007, CL.

[32]  Marine Carpuat,et al.  The Trouble with SMT Consistency , 2012, WMT@NAACL-HLT.

[33]  Pierre Isabelle,et al.  Machine Translation: Overview , 2006 .

[34]  Marine Carpuat,et al.  Word Sense Disambiguation vs. Statistical Machine Translation , 2005, ACL.

[35]  Guodong Zhou,et al.  Cache-based Document-level Statistical Machine Translation , 2011, EMNLP.

[36]  Marcello Federico,et al.  Topic Adaptation for Lecture Translation through Bilingual Latent Semantic Models , 2011, WMT@EMNLP.

[37]  Philipp Koehn,et al.  In Proceedings of the Tenth Conference of the Association for Machine Translation in the Americas (AMTA) , 2012 .

[38]  Laurence Danlos,et al.  Automatic Recognition of French Expletive Pronoun Occurrences , 2005, IJCNLP.

[39]  Andrei Popescu-Belis,et al.  How Comparable are Parallel Corpora? Measuring the Distribution of General Vocabulary and Connectives , 2011, BUCC@ACL.

[40]  Eric P. Xing,et al.  HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation , 2007, NIPS.

[41]  Jörg Tiedemann To Cache or Not To Cache? Experiments with Adaptive Models in Statistical Machine Translation , 2010, WMT@ACL.

[42]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[43]  Francis M. Tyers,et al.  Apertium: a free/open-source platform for rule-based machine translation , 2011, Machine Translation.

[44]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[45]  Douglas W. Oard,et al.  Encouraging Consistent Translation Choices , 2012, NAACL.

[46]  Jörg Tiedemann,et al.  Document-Wide Decoding for Phrase-Based Statistical Machine Translation , 2012, EMNLP.

[47]  John Cocke,et al.  A Statistical Approach to Machine Translation , 1990, CL.

[48]  Hwee Tou Ng,et al.  Word Sense Disambiguation Improves Statistical Machine Translation , 2007, ACL.

[49]  Andrei Popescu-Belis,et al.  Using Sense-labeled Discourse Connectives for Statistical Machine Translation , 2012, ESIRMT/HyTra@EACL.

[50]  Sharid Loáiciga,et al.  Italian and Spanish Null Subjects. A Case Study Evaluation in an MT Perspective , 2012, LREC.

[51]  Sharid Loáiciga,et al.  Improving machine translation of null subjects in Italian and Spanish , 2012, EACL.

[52]  Jörg Tiedemann,et al.  The Uppsala-FBK systems at WMT 2011 , 2011, WMT@EMNLP.

[53]  Marine Carpuat,et al.  Improving Statistical Machine Translation Using Word Sense Disambiguation , 2007, EMNLP.

[54]  Philipp Koehn,et al.  Findings of the 2011 Workshop on Statistical Machine Translation , 2011, WMT@EMNLP.

[55]  M. Novák Utilization of Anaphora in Machine Translation , 2011 .

[56]  Daniel Marcu,et al.  The Automatic Translation of Discourse Structures , 2000, ANLP.

[57]  Philipp Koehn,et al.  Findings of the 2010 Joint Workshop on Statistical Machine Translation and Metrics for Machine Translation , 2010, WMT@ACL.

[58]  Marine Carpuat,et al.  How phrase sense disambiguation outperforms word sense disambiguation for statistical machine translation , 2007, TMI.

[59]  C. D. Paice,et al.  Towards the automatic recognition of anaphoric features in English text: the impersonal pronoun “it” , 1987 .

[60]  Guodong Zhou,et al.  N-gram-based Tense Models for Statistical Machine Translation , 2012, EMNLP.

[61]  Yu Zhang,et al.  Statistical Machine Translation based on LDA , 2010, 2010 4th International Universal Communication Symposium.

[62]  Philipp Koehn,et al.  Findings of the 2012 Workshop on Statistical Machine Translation , 2012, WMT@NAACL-HLT.

[63]  Philipp Koehn,et al.  Re-evaluating the Role of Bleu in Machine Translation Research , 2006, EACL.

[64]  Lluís Màrquez i Villodre,et al.  Context-aware Discriminative Phrase Selection for Statistical Machine Translation , 2007, WMT@ACL.

[65]  Eric P. Xing,et al.  BiTAM: Bilingual Topic AdMixture Models for Word Alignment , 2006, ACL.

[66]  Andrei Popescu-Belis,et al.  Discourse-level Annotation over Europarl for Machine Translation: Connectives and Pronouns , 2012, LREC.

[67]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[68]  Daphne Koller,et al.  Word-Sense Disambiguation for Machine Translation , 2005, HLT.

[69]  Marine Carpuat,et al.  One Translation Per Discourse , 2009, SEW@NAACL-HLT.

[70]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[71]  Yves Scherrer,et al.  La traduction automatique des pronoms. Problèmes et perspectives (Automatic translation of pronouns. Problems and perspectives) , 2011, JEPTALNRECITAL.

[72]  Marcello Federico,et al.  Modelling pronominal anaphora in statistical machine translation , 2010, IWSLT.

[73]  Miles Osborne,et al.  Statistical Machine Translation , 2010, Encyclopedia of Machine Learning and Data Mining.

[74]  Yves Scherrer,et al.  Étude inter-langues de la distribution et des ambiguïtés syntaxiques des pronoms (A study of cross-language distribution and syntactic ambiguities of pronouns) , 2011, JEPTALNRECITAL.

[75]  Thomas Meyer,et al.  Disambiguating temporal-contrastive connectives for machine translation , 2011, ACL.

[76]  Ido Dagan,et al.  Synthesis Lectures on Human Language Technologies , 2009 .

[77]  Yannick Versley,et al.  BART: A Multilingual Anaphora Resolution System , 2010, *SEMEVAL.

[78]  David Yarowsky,et al.  NADA: A Robust System for Non-referential Pronoun Detection , 2011, DAARC.

[79]  Uwe Reyle,et al.  From Discourse to Logic - Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory , 1993, Studies in linguistics and philosophy.