Optimal Semicomputable Approximations to Reachable and Invariant Sets

In this paper we consider the computation of reachable, viable and invariant sets for discrete-time systems. We use the framework of type-two effectivity, in which computations are performed by Turing machines with infinite input and output tapes, with the representations of computable topology. We see that the reachable set is lower-semicomputable, and the viability and invariance kernels are upper-semicomputable. We then define an upper-semicomputable over-approximation to the reachable set, and lower-semicomputable under-approximations to the viability and invariance kernels, and show that these approximations are optimal.

[1]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[2]  Pravin Varaiya,et al.  Modeling and verification of hybrid systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[3]  A. C. Thompson,et al.  Theory of correspondences : including applications to mathematical economics , 1984 .

[4]  Pravin Varaiya,et al.  On Ellipsoidal Techniques for Reachability Analysis. Part II: Internal Approximations Box-valued Constraints , 2002, Optim. Methods Softw..

[5]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[6]  B. I. Silva,et al.  Modeling and Verifying Hybrid Dynamic Systems Using CheckMate , 2001 .

[7]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[8]  Ahmed Bouajjani,et al.  Perturbed Turing machines and hybrid systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[9]  Pravin Varaiya,et al.  On Ellipsoidal Techniques for Reachability Analysis. Part I: External Approximations , 2002, Optim. Methods Softw..

[10]  P. Saint-Pierre Approximation of the viability kernel , 1994 .

[11]  Martin Fränzle What Will Be Eventually True of Polynomial Hybrid Automata? , 2001, TACS.

[12]  O. Junge,et al.  A set oriented approach to global optimal control , 2004 .

[13]  James R. Munkres,et al.  Topology; a first course , 1974 .

[14]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[15]  D. Szolnoki Set oriented methods for computing reachable sets and control sets , 2003 .

[16]  P. Saint-Pierre,et al.  Set-Valued Numerical Analysis for Optimal Control and Differential Games , 1999 .

[17]  Thao Dang,et al.  d/dt: a verification tool for hybrid systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[18]  O. Junge,et al.  The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .

[19]  Martin Fränzle,et al.  Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity of States , 1999, CSL.

[20]  J. E. Jayne THEORY OF CORRESPONDENCES Including Applications to Mathematical Economics (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1985 .

[21]  Thomas A. Henzinger,et al.  Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods , 2000, HSCC.

[22]  P. Collins On the Computability of Reachable and Invariant Sets , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Pieter Collins,et al.  Continuity and computability of reachable sets , 2005, Theor. Comput. Sci..

[24]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[25]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[26]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[27]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.