Bi-Jacobi fields and Riemannian cubics for left-invariant $SO(3)$
暂无分享,去创建一个
[1] L. Noakes. Approximating near-geodesic natural cubic splines , 2014 .
[2] E. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies; With an Introduction to the Problem of Three Bodies , 2012 .
[3] François-Xavier Vialard,et al. Invariant Higher-Order Variational Problems II , 2011, J. Nonlinear Sci..
[4] Darryl D. Holm,et al. Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.
[5] Darryl D. Holm,et al. Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .
[6] Lyle Noakes,et al. Asymptotics of Null Lie Quadratics in E3 , 2008, SIAM J. Appl. Dyn. Syst..
[7] Lyle Noakes,et al. Geometry for robot path planning , 2007, Robotica.
[8] L. Noakes. LAX CONSTRAINTS IN SEMISIMPLE LIE GROUPS , 2006 .
[9] Lyle Noakes,et al. Duality and Riemannian cubics , 2006, Adv. Comput. Math..
[10] Lyle Noakes,et al. Non-null Lie quadratics in E3 , 2004 .
[11] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[12] L. Noakes. Null cubics and Lie quadratics , 2003 .
[13] P. Crouch,et al. On the geometry of Riemannian cubic polynomials , 2001 .
[14] J. Marsden,et al. Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.
[15] Geometry of the Virasoro-Bott group , 1998 .
[16] Ravi Ramamoorthi,et al. Fast construction of accurate quaternion splines , 1997, SIGGRAPH.
[17] P. Crouch,et al. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .
[18] Lyle Noakes,et al. Cubic Splines on Curved Spaces , 1989 .
[19] Bernard R Gelbaum,et al. The variational theory of geodesics , 1967 .