Bi-Jacobi fields and Riemannian cubics for left-invariant $SO(3)$

Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3), but not for Lie groups whose Riemannian metric is only left-invariant. Because left-invariant Riemannian metrics occur naturally in applications, there is also a need to calculate bi-Jacobi fields in such cases. The present paper investigates bi-Jacobi fields for left-invariant Riemannian metrics on SO(3), reducing calculations to quadratures of Jacobi fields. Then left-Lie reductions are used to give an easily implemented numerical method for calculating bi-Jacobi fields along geodesics in SO(3), and an example is given of a nearly geodesic approximate Riemannian cubic.

[1]  L. Noakes Approximating near-geodesic natural cubic splines , 2014 .

[2]  E. Whittaker A Treatise on the Analytical Dynamics of Particles and Rigid Bodies; With an Introduction to the Problem of Three Bodies , 2012 .

[3]  François-Xavier Vialard,et al.  Invariant Higher-Order Variational Problems II , 2011, J. Nonlinear Sci..

[4]  Darryl D. Holm,et al.  Invariant Higher-Order Variational Problems , 2010, Communications in Mathematical Physics.

[5]  Darryl D. Holm,et al.  Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .

[6]  Lyle Noakes,et al.  Asymptotics of Null Lie Quadratics in E3 , 2008, SIAM J. Appl. Dyn. Syst..

[7]  Lyle Noakes,et al.  Geometry for robot path planning , 2007, Robotica.

[8]  L. Noakes LAX CONSTRAINTS IN SEMISIMPLE LIE GROUPS , 2006 .

[9]  Lyle Noakes,et al.  Duality and Riemannian cubics , 2006, Adv. Comput. Math..

[10]  Lyle Noakes,et al.  Non-null Lie quadratics in E3 , 2004 .

[11]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[12]  L. Noakes Null cubics and Lie quadratics , 2003 .

[13]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[14]  J. Marsden,et al.  Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.

[15]  Geometry of the Virasoro-Bott group , 1998 .

[16]  Ravi Ramamoorthi,et al.  Fast construction of accurate quaternion splines , 1997, SIGGRAPH.

[17]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[18]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[19]  Bernard R Gelbaum,et al.  The variational theory of geodesics , 1967 .