Classification of regular embeddings of hypercubes of odd dimension

By a regular embedding of a graph into a closed surface we mean a 2-cell embedding with the automorphism group acting regularly on flags. Recently, Kwon and Nedela [Non-existence of nonorientable regular embeddings of n-dimensional cubes, Discrete Math., to appear] showed that no regular embeddings of the n-dimensional cubes Q"n into nonorientable surfaces exist for any positive integer n>2. In 1997, Nedela and Skoviera [Regular maps from voltage assignments and exponent groups, European J. Combin. 18 (1997) 807-823] presented a construction giving for each solution of the congruence e^2=1(modn) a regular embedding M"e of the hypercube Q"n into an orientable surface. It was conjectured that all regular embeddings of Q"n into orientable surfaces can be constructed in this way. This paper gives a classification of regular embeddings of hypercubes Q"n into orientable surfaces for n odd, proving affirmatively the conjecture of Nedela and Skoviera for every odd n.

[1]  Martin Skoviera,et al.  Regular Maps from Voltage Assignments and Exponent Groups , 1997, Eur. J. Comb..

[2]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[3]  G. Jones,et al.  Theory of Maps on Orientable Surfaces , 1978 .

[4]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[5]  Roman Nedela,et al.  A Classification of Regular Embeddings of Graphs of Order a Product of Two Primes , 2004 .

[6]  Young Soo Kwon,et al.  Regular orientable embeddings of complete bipartite graphs , 2005 .

[7]  Arthur T. White,et al.  Permutation Groups and Combinatorial Structures , 1979 .

[8]  Gareth A. Jones,et al.  Regular orientable imbeddings of complete graphs , 1985, J. Comb. Theory B.

[9]  ALEKSANDER MALNI,et al.  Regular Homomorphisms and Regular Maps , 2000 .

[10]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is an odd prime power , 2007, Eur. J. Comb..

[11]  Young Soo Kwon New regular embeddings of n‐cubes Qn , 2004, J. Graph Theory.

[12]  Jin Ho Kwak,et al.  Regular embeddings of complete multipartite graphs , 2005, Eur. J. Comb..

[13]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is a power of 2. I: Metacyclic case , 2007, Eur. J. Comb..

[14]  Young Soo Kwon,et al.  Non-existence of nonorientable regular embeddings of n-dimensional cubes , 2007, Discret. Math..

[15]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[16]  Martin Skoviera,et al.  Regular maps from Cayley graphs III: t-balanced Cayley maps , 2007, Discret. Math..

[17]  Martin Skoviera,et al.  Regular Embeddings of Canonical Double Coverings of Graphs , 1996, J. Comb. Theory, Ser. B.

[18]  Martin Skoviera,et al.  Regular maps from Cayley graphs, part 1: Balanced Cayley maps , 1992, Discret. Math..

[19]  B. Huppert Endliche Gruppen I , 1967 .

[20]  Young Soo Kwon New regular embeddings of n-cubes Q n , 2004 .

[21]  Jozef Širáň,et al.  Characterisation of Graphs which Underlie Regular Maps on Closed Surfaces , 1999 .

[22]  R. Nedela REGULAR MAPS-COMBINATORIAL OBJECTS RELATING DIFFERENT FIELDS OF MATHEMATICS , 2001 .

[23]  Martin Skoviera,et al.  Which generalized petersen graphs are cayley graphs? , 1995, J. Graph Theory.

[24]  J. V. Armitage,et al.  Introduction to Number Theory , 1966 .

[25]  H. R. Brahana Regular Maps and Their Groups , 1927 .