Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension
暂无分享,去创建一个
M Giacofci | S Lambert-Lacroix | G Marot | F Picard | S. Lambert-Lacroix | F. Picard | G. Marot | M. Giacofci | Madison Giacofci
[1] Franck Picard,et al. Preprocessing and downstream analysis of microarray DNA copy number profiles , 2011, Briefings Bioinform..
[2] E. Petricoin,et al. Use of proteomic patterns in serum to identify ovarian Cancer , 2002 .
[3] Ajay N. Jain,et al. Breast tumor copy number aberration phenotypes and genomic instability , 2006, BMC Cancer.
[4] M. A. van de Wiel,et al. Weighted clustering of called array CGH data. , 2008, Biostatistics.
[5] Jeffrey S. Morris,et al. Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[6] Jun Zhang,et al. A wavelet-based KL-like expansion for wide-sense stationary random processes , 1994, IEEE Trans. Signal Process..
[7] Jeffrey S. Morris,et al. Bayesian Analysis of Mass Spectrometry Proteomic Data Using Wavelet‐Based Functional Mixed Models , 2008, Biometrics.
[8] B. Silverman,et al. Wavelet thresholding via a Bayesian approach , 1998 .
[9] Robin Thompson,et al. [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment , 1991 .
[10] K. Pearson,et al. Biometrika , 1902, The American Naturalist.
[11] Chao Yang,et al. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis , 2009, BMC Bioinformatics.
[12] O. John Semmes,et al. Functional Clustering Algorithm for High-Dimensional Proteomics Data , 2005, Journal of biomedicine & biotechnology.
[13] S. Tavaré,et al. High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer , 2007, Genome Biology.
[14] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[15] Gérard Govaert,et al. Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[16] J. Kiefer,et al. Sequential minimax search for a maximum , 1953 .
[17] T M Therneau,et al. An insight into high-resolution mass-spectrometry data. , 2009, Biostatistics.
[18] B. Mallick,et al. Functional clustering by Bayesian wavelet methods , 2006 .
[19] G. Weiss,et al. Littlewood-Paley Theory and the Study of Function Spaces , 1991 .
[20] Bill Bynum,et al. Lancet , 2015, The Lancet.
[21] G. Robinson. That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .
[22] Anestis Antoniadis,et al. Nonparametric Pre-Processing Methods and Inference Tools for Analyzing Time-of-Flight Mass Spectrometry Data. , 2007 .
[23] Fan Yang,et al. Using random forest for reliable classification and cost-sensitive learning for medical diagnosis , 2009, BMC Bioinformatics.
[24] Elvira Romano,et al. Spatial functional normal mixed effect approach for curve classification , 2014, Adv. Data Anal. Classif..
[25] Catherine A. Sugar,et al. Clustering for Sparsely Sampled Functional Data , 2003 .
[26] Bernard W. Silverman,et al. Functional Data Analysis , 1997 .
[27] Jianqing Fan. Test of Significance Based on Wavelet Thresholding and Neyman's Truncation , 1996 .
[28] Masahiro Kuroda,et al. Accelerating the convergence of the EM algorithm using the vector epsilon , 2006, Comput. Stat. Data Anal..
[29] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[30] Anestis Antoniadis,et al. Estimation and inference in functional mixed-effects models , 2007, Comput. Stat. Data Anal..
[31] M. Hilario,et al. Processing and classification of protein mass spectra. , 2006, Mass spectrometry reviews.
[32] Anestis Antoniadis,et al. A Multiscale Approach for Statistical Characterization of Functional Images , 2009 .
[33] Jeffrey S. Morris,et al. Statistical contributions to proteomic research. , 2010, Methods in molecular biology.