A lambda-calculus with explicit weakening and explicit substitution

Since Mellies showed that λσ (a calculus of explicit substitutions) does not preserve the strong normalization of the β-reduction, it has become a challenge to find a calculus satisfying the following properties: step-by-step simulation of the β-reduction, confluence on terms with metavariables, strong normalization of the calculus of substitutions and preservation of the strong normalization of the λ-calculus. We present here such a calculus. The main novelty of this calculus (given with de Bruijn indices) is the use of labels that represent updating functions and correspond to explicit weakening. A typed version is also presented.

[1]  César A. Muñoz,et al.  Confluence and preservation of strong normalisation in an explicit substitutions calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[2]  Bruno Guillaume The λ s e -calculus does not preserve strong normalisation , 2000 .

[3]  Bruno Guillaume Un calcul de substitution avec etiquettes , 1999 .

[4]  Delia Kesner,et al.  Lambda-Calculi with Explicit Substitutions and Composition Which Preserve Beta-Strong Normalization , 1996, ALP.

[5]  Fairouz Kamareddine,et al.  The S-calculus: Its Typed and Its Extended Versions , 1995 .

[6]  Fairouz Kamareddine,et al.  Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi , 1998, Log. J. IGPL.

[7]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[8]  Fairouz Kamareddine,et al.  A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .

[9]  C. Muñoz,et al.  Un calcul de substitutions pour la representation de preuves partielles en theorie de types , 1997 .

[10]  Jean Goubault-Larrecq,et al.  Sequent combinators: a Hilbert system for the lambda calculus , 2000, Mathematical Structures in Computer Science.

[11]  Delia Kesner,et al.  -calculi with Explicit Substitutions and Weak Composition Which Preserve -strong Normalization , 1996 .

[12]  Pierre Lescanne,et al.  λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.

[13]  René David The Inf Function in the System F , 1994, Theor. Comput. Sci..

[14]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[15]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[16]  Fairouz Kamareddine,et al.  Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..

[17]  Roberto Di Cosmo,et al.  Proof nets and explicit substitutions , 2000, Mathematical Structures in Computer Science.

[18]  Alejandro Ríos,et al.  A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.

[19]  Thérèse Hardin,et al.  Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..

[20]  Roberto Di Cosmo,et al.  Strong normalization of explicit substitutions via cut elimination in proof nets , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[21]  KamareddineFairouz,et al.  Extending a -calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms , 1997 .

[22]  Paul-André Melliès Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.