A lambda-calculus with explicit weakening and explicit substitution
暂无分享,去创建一个
[1] César A. Muñoz,et al. Confluence and preservation of strong normalisation in an explicit substitutions calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[2] Bruno Guillaume. The λ s e -calculus does not preserve strong normalisation , 2000 .
[3] Bruno Guillaume. Un calcul de substitution avec etiquettes , 1999 .
[4] Delia Kesner,et al. Lambda-Calculi with Explicit Substitutions and Composition Which Preserve Beta-Strong Normalization , 1996, ALP.
[5] Fairouz Kamareddine,et al. The S-calculus: Its Typed and Its Extended Versions , 1995 .
[6] Fairouz Kamareddine,et al. Bridging de Bruijn Indices and Variable Names in Explicit Substitutions Calculi , 1998, Log. J. IGPL.
[7] Paul-Andr. Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .
[8] Fairouz Kamareddine,et al. A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .
[9] C. Muñoz,et al. Un calcul de substitutions pour la representation de preuves partielles en theorie de types , 1997 .
[10] Jean Goubault-Larrecq,et al. Sequent combinators: a Hilbert system for the lambda calculus , 2000, Mathematical Structures in Computer Science.
[11] Delia Kesner,et al. -calculi with Explicit Substitutions and Weak Composition Which Preserve -strong Normalization , 1996 .
[12] Pierre Lescanne,et al. λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.
[13] René David. The Inf Function in the System F , 1994, Theor. Comput. Sci..
[14] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[15] Enno Ohlebusch,et al. Term Rewriting Systems , 2002 .
[16] Fairouz Kamareddine,et al. Extending a lambda-Calculus with Explicit Substitution which Preserves Strong Normalisation Into a Confluent Calculus on Open Terms , 1997, J. Funct. Program..
[17] Roberto Di Cosmo,et al. Proof nets and explicit substitutions , 2000, Mathematical Structures in Computer Science.
[18] Alejandro Ríos,et al. A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.
[19] Thérèse Hardin,et al. Confluence Results for the Pure Strong Categorical Logic CCL: lambda-Calculi as Subsystems of CCL , 1989, Theor. Comput. Sci..
[20] Roberto Di Cosmo,et al. Strong normalization of explicit substitutions via cut elimination in proof nets , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[21] KamareddineFairouz,et al. Extending a -calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms , 1997 .
[22] Paul-André Melliès. Typed lambda-calculi with explicit substitutions may not terminate , 1995, TLCA.