Pressure stabilization strategies for a LES filtering Reduced Order Model

We present a stabilized POD–Galerkin reduced order method (ROM) for a Leray model. For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. In both steps of the EF algorithm, velocity and pressure fields are approximated using different POD basis and coefficients. To achieve pressure stabilization, we consider and compare two strategies: the pressure Poisson equation and the supremizer enrichment of the velocity space. We show that the evolve and filtered velocity spaces have to be enriched with the supremizer solutions related to both evolve and filter pressure fields in order to obtain stable and accurate solutions with the supremizer enrichment method. We test our ROM approach on a 2D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. We find that both stabilization strategies produce comparable errors in the reconstruction of the lift and drag coefficients, with the pressure Poisson equation method being more computationally efficient.

[1]  Gianluigi Rozza,et al.  Model Reduction of Parametrized Systems , 2017 .

[2]  Zhu Wang,et al.  Approximate Deconvolution Reduced Order Modeling , 2015, 1510.02726.

[3]  Traian Iliescu,et al.  A Leray regularized ensemble-proper orthogonal decomposition method for parameterized convection-dominated flows , 2017, IMA Journal of Numerical Analysis.

[4]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[5]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .

[6]  Jens Lohne Eftang,et al.  Reduced Basis Methods for Partial Differential Equations : Evaluation of multiple non-compliant flux-type output functionals for a non-affine electrostatics problem , 2008 .

[7]  Elisabeth Longatte,et al.  Parametric study of flow-induced vibrations in cylinder arrays under single-phase fluid cross flows using POD-ROM , 2018 .

[8]  Annalisa Quaini,et al.  A POD-Galerkin reduced order model for a LES filtering approach , 2020, J. Comput. Phys..

[9]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[10]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[11]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[12]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[13]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[14]  Traian Iliescu,et al.  An Evolve-Filter-Relax Stabilized Reduced Order Stochastic Collocation Method for the Time-Dependent Navier-Stokes Equations , 2019, SIAM/ASA J. Uncertain. Quantification.

[15]  Annalisa Quaini,et al.  A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization , 2019, Computers & Fluids.

[16]  A. Dunca,et al.  On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows , 2006, SIAM J. Math. Anal..

[17]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[18]  Gianluigi Rozza,et al.  Model Order Reduction: a survey , 2016 .

[19]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[20]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[21]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[22]  Leo G. Rebholz,et al.  Modular Nonlinear Filter Stabilization of Methods for Higher Reynolds Numbers Flow , 2012 .

[23]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[24]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[25]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[26]  Antonio Huerta,et al.  Parametric solutions of turbulent incompressible flows in OpenFOAM via the proper generalised decomposition , 2020, J. Comput. Phys..

[27]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[28]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[29]  Annalisa Quaini,et al.  Fluid-structure interaction simulations with a LES filtering approach in solids4Foam , 2021, ArXiv.

[30]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[31]  John P. Boyd,et al.  Two Comments on Filtering (Artificial Viscosity) for Chebyshev and Legendre Spectral and Spectral Element Methods , 1998 .

[32]  Matthew F. Barone,et al.  On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far‐field boundary treatment , 2010 .

[33]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[34]  C. Allery,et al.  Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..

[35]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[36]  Traian Iliescu,et al.  An evolve‐then‐filter regularized reduced order model for convection‐dominated flows , 2015, 1506.07555.

[37]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[38]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[39]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[40]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[41]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[42]  Annalisa Quaini,et al.  Deconvolution‐based nonlinear filtering for incompressible flows at moderately large Reynolds numbers , 2016 .

[43]  Gianluigi Rozza,et al.  Efficient geometrical parametrization for finite‐volume‐based reduced order methods , 2019, International Journal for Numerical Methods in Engineering.

[44]  Zhu Wang,et al.  Numerical analysis of the Leray reduced order model , 2017, J. Comput. Appl. Math..

[45]  Martin Isoz,et al.  POD-DEIM based model order reduction for speed-up of flow parametric studies , 2019, Ocean Engineering.

[46]  Longfei Li,et al.  A split-step finite-element method for incompressible Navier-Stokes equations with high-order accuracy up-to the boundary , 2019, J. Comput. Phys..

[47]  Julia S. Mullen,et al.  Filter-based stabilization of spectral element methods , 2001 .

[48]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Distributed Elliptic Optimal Control Problems with Control Constraints , 2016, SIAM J. Sci. Comput..

[49]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[50]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[51]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[52]  Leo G. Rebholz,et al.  Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering , 2013 .

[53]  Elisabeth Longatte,et al.  A Galerkin-free model reduction approach for the Navier-Stokes equations , 2016, J. Comput. Phys..

[54]  P. Lax,et al.  Systems of conservation laws , 1960 .

[55]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .