Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing

[1]  H. Titi,et al.  SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media. , 2022, Angewandte Chemie.

[2]  B. Sarma,et al.  Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. , 2022, Chemical reviews.

[3]  S. Spatari,et al.  Mechanochemistry Can Reduce Life Cycle Environmental Impacts of Manufacturing Active Pharmaceutical Ingredients , 2022, ACS Sustainable Chemistry & Engineering.

[4]  Jian-rong Wang,et al.  Superior Dissolution Behavior and Bioavailability of Pharmaceutical Cocrystals and Recent Regulatory Issues. , 2021, ACS medicinal chemistry letters.

[5]  C. Sandaruwan,et al.  Mechanochemical Synthesis of Polymorphic Urea ⋅ Adipic Acid Cocrystal as a Sustained-Release Nitrogen Source. , 2021, ChemSusChem.

[6]  Ranjit Thakuria,et al.  Mechanosynthesis, Characterization, and Physicochemical Property Investigation of a Favipiravir Cocrystal with Theophylline and GRAS Coformers , 2021, Crystal Growth & Design.

[7]  Ranjit Thakuria,et al.  Mechanosynthesis of Eutectics of Anti‐Inflammatory Drug Ethenzamide – A Comparison with Analogous Cocrystals , 2021, Chemistry–Methods.

[8]  M. Zaworotko,et al.  Screening and Preparation of Cocrystals: A Comparative Study of Mechanochemistry vs Slurry Methods , 2021, Crystal growth & design.

[9]  J. M. Germán-Acacio,et al.  Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals , 2021, Pharmaceutics.

[10]  Evelina Colacino,et al.  Upscaling Mechanochemistry: Challenges and Opportunities for Sustainable Industry , 2021 .

[11]  D. Douroumis,et al.  Continuous Manufacture and Scale-Up of Theophylline-Nicotinamide Cocrystals , 2021, Pharmaceutics.

[12]  H. Samsodien,et al.  Pharmaceutical co‐crystal: An alternative strategy for enhanced physicochemical properties and drug synergy , 2021 .

[13]  B. Likozar,et al.  Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review , 2020, Organic Process Research & Development.

[14]  Mori Dhaval,et al.  Twin-Screw Extruder in Pharmaceutical Industry: History, Working Principle, Applications, and Marketed Products: an In-depth Review , 2020, Journal of Pharmaceutical Innovation.

[15]  P. Panzade,et al.  Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form , 2020, Drug development and industrial pharmacy.

[16]  Giovana Carolina Bazzo,et al.  Eutectic mixtures as an approach to enhance solubility, dissolution rate and oral bioavailability of poorly water-soluble drugs. , 2020, International journal of pharmaceutics.

[17]  F. Delogu,et al.  Solvent-Free, Continuous Synthesis of Hydrazone-Based Active Pharmaceutical Ingredients by Twin-Screw Extrusion , 2020 .

[18]  A. Nangia,et al.  Can We Identify the Salt–Cocrystal Continuum State Using XPS? , 2020 .

[19]  Kunn Hadinoto,et al.  Continuous crystallization as a downstream processing step of pharmaceutical proteins: A review , 2020 .

[20]  Tejender S. Thakur,et al.  Crystalline Multicomponent Solids: An Alternative for Addressing the Hygroscopicity Issue in Pharmaceutical Materials , 2020 .

[21]  C. C. Seaton,et al.  Improving Stability of Effervescent Products by Co-Crystal Formation: A Novel Application of Crystal Engineered Citric Acid , 2020 .

[22]  F. Zhang,et al.  Polymer-Assisted Aripiprazole-Adipic Acid Cocrystals Produced by Hot Melt Extrusion Techniques. , 2020, Crystal growth & design.

[23]  P. McArdle,et al.  Influence of Excipients on Cocrystal Stability and Formation , 2020, Crystal Growth & Design.

[24]  S. Kamath,et al.  Pharmaceutical Co-Crystallization: Regulatory Aspects, Design, Characterization, and Applications , 2020, Advanced pharmaceutical bulletin.

[25]  Srinivas Lankalapalli,et al.  Insight into Concept and Progress on Pharmaceutical Co-Crystals: An overview , 2019, Indian Journal of Pharmaceutical Education and Research.

[26]  Venu R. Vangala,et al.  Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines , 2019, Crystal Growth & Design.

[27]  F. Emmerling,et al.  Tuning the Apparent Stability of Polymorphic Cocrystals through Mechanochemistry , 2019, Crystal Growth & Design.

[28]  C. Muehlenfeld,et al.  Scale-Up of pharmaceutical Hot-Melt-Extrusion: Process optimization and transfer. , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  Q. Yin,et al.  Preparation of Theophylline-Benzoic Acid Cocrystal and On-Line Monitoring of Cocrystallization Process in Solution by Raman Spectroscopy , 2019, Crystals.

[30]  Venkata Raman Kallakunta,et al.  An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I , 2019, Expert opinion on drug delivery.

[31]  P. A. Shah,et al.  Natural biodegradable polymers based nano‐formulations for drug delivery: A review , 2019, International journal of pharmaceutics.

[32]  Fernando Gomollón-Bel Ten Chemical Innovations That Will Change Our World: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable , 2019, Chemistry International.

[33]  G. Walker,et al.  Pharmaceutical cocrystals: from serendipity to design to application. , 2019, Drug discovery today.

[34]  M. Eddleston,et al.  Cocrystal Dissociation under Controlled Humidity: A Case Study of Caffeine–Glutaric Acid Cocrystal Polymorphs , 2019, Organic Process Research & Development.

[35]  J. Pluta,et al.  Continuous, one‐step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix‐assisted processing – State of the art , 2019, International journal of pharmaceutics.

[36]  R. Suryanarayanan,et al.  Role of Coformer and Excipient Properties on the Solid-State Stability of Theophylline Cocrystals , 2019, Crystal Growth & Design.

[37]  I. Dejanović,et al.  Control of Pharmaceutical Cocrystal Polymorphism on Various Scales by Mechanochemistry: Transfer from the Laboratory Batch to the Large-Scale Extrusion Processing , 2018, ACS Sustainable Chemistry & Engineering.

[38]  Xiaonan Wang,et al.  Biocatalytic Continuous Manufacturing of Diabetes Drug: Plantwide Process Modeling, Optimization, and Environmental and Economic Analysis , 2018, ACS Sustainable Chemistry & Engineering.

[39]  G. Walker,et al.  Pharmaceutical Cocrystal Drug Products: An Outlook on Product Development. , 2018, Trends in pharmacological sciences.

[40]  A. Nangia,et al.  Cocrystals, Salts, and Supramolecular Gels of Nonsteroidal Anti-Inflammatory Drug Niflumic Acid , 2018, Crystal Growth & Design.

[41]  M. Jug,et al.  Grinding as Solvent-Free Green Chemistry Approach for Cyclodextrin Inclusion Complex Preparation in the Solid State , 2018, Pharmaceutics.

[42]  Tejender S. Thakur,et al.  Preparation of Pyrazinamide Eutectics versus Cocrystals Based on Supramolecular Synthon Variations , 2018, Crystal Growth & Design.

[43]  P. Ricci,et al.  Processing and Investigation Methods in Mechanochemical Kinetics , 2018, ACS omega.

[44]  Gavin Walker,et al.  Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications , 2018, Crystal Growth & Design.

[45]  Marisa Rodrigues,et al.  Pharmaceutical cocrystallization techniques. Advances and challenges , 2018, International journal of pharmaceutics.

[46]  M. Lusi Engineering crystal properties through solid solutions , 2018 .

[47]  Qiming Wang,et al.  Continuous Manufacturing of Cocrystals Using Solid State Shear Milling Technology , 2018 .

[48]  Ranjit Thakuria,et al.  Drug‑Drug and Drug‑Nutraceutical Cocrystal/Salt as Alternative Medicine for Combination Therapy: A Crystal Engineering Approach , 2018 .

[49]  David S. Jones,et al.  Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Enhancing Cocrystal Yield. , 2017, Molecular pharmaceutics.

[50]  G. Zografi,et al.  Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. , 2018, Journal of pharmaceutical sciences.

[51]  R. Suryanarayanan,et al.  Mechanistic Insight into Caffeine-Oxalic Cocrystal Dissociation in Formulations: Role of Excipients. , 2017, Molecular pharmaceutics.

[52]  G. Zografi,et al.  Solid-State Properties of Pharmaceutical Materials , 2017 .

[53]  T. Friščić,et al.  Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry , 2017, Synlett.

[54]  Dennis Douroumis,et al.  Advanced methodologies for cocrystal synthesis , 2017, Advanced drug delivery reviews.

[55]  William Jones,et al.  Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide☆ , 2017, Advanced drug delivery reviews.

[56]  K. Nagapudi,et al.  High-throughput screening and scale-up of cocrystals using resonant acoustic mixing. , 2017, International journal of pharmaceutics.

[57]  F. Emmerling,et al.  Impact Is Important—Systematic Investigation of the Influence of Milling Balls in Mechanochemical Reactions , 2017 .

[58]  F. Emmerling,et al.  Knowing When To Stop—Trapping Metastable Polymorphs in Mechanochemical Reactions , 2017 .

[59]  A. Bansal,et al.  Challenges in Translational Development of Pharmaceutical Cocrystals. , 2017, Journal of pharmaceutical sciences.

[60]  T. Friščić,et al.  Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber , 2017, Molecules.

[61]  Tomislav Friščić,et al.  Mechanochemistry: A Force of Synthesis , 2016, ACS central science.

[62]  D. Gadade,et al.  Pharmaceutical Cocrystals: Regulatory and Strategic Aspects, Design and Development. , 2016, Advanced pharmaceutical bulletin.

[63]  David S. Jones,et al.  Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Feasibility Studies and Physicochemical Characterization. , 2016, Molecular pharmaceutics.

[64]  W. Jones,et al.  Mechanochemical Synthesis of Multicomponent Crystals: One Liquid for One Polymorph? A Myth to Dispel , 2016 .

[65]  N. Rodríguez-Hornedo,et al.  Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. , 2016, Advanced drug delivery reviews.

[66]  Dennis Douroumis,et al.  Continuous Manufacturing of High Quality Pharmaceutical Cocrystals Integrated with Process Analytical Tools for In-Line Process Control , 2016 .

[67]  J. H. T. Horst,et al.  Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System , 2016 .

[68]  W. Jones,et al.  Polymer-Assisted Grinding, a Versatile Method for Polymorph Control of Cocrystallization , 2016 .

[69]  Dimitrios I. Gerogiorgis,et al.  Plantwide design and economic evaluation of two Continuous Pharmaceutical Manufacturing (CPM) cases: Ibuprofen and artemisinin , 2015, Comput. Chem. Eng..

[70]  H. Abdel-Hady,et al.  Caffeine therapy in preterm infants. , 2015, World journal of clinical pediatrics.

[71]  Rumana Parveen,et al.  Easy Access to Supramolecular Gels of the Nonsteroidal Anti-inflammatory Drug Diflunisal: Synthesis, Characterization, and Plausible Biomedical Applications. , 2015, Chemistry, an Asian journal.

[72]  R. Censi,et al.  Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs , 2015, Molecules.

[73]  D. Voinovich,et al.  Cocrystal Formation through Mechanochemistry: from Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding. , 2015, Angewandte Chemie.

[74]  K. Harris,et al.  Discovery of New Metastable Polymorphs in a Family of Urea Co-Crystals by Solid-State Mechanochemistry , 2015 .

[75]  G. Desiraju,et al.  Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug-Coformer Interactions. , 2015, Molecular pharmaceutics.

[76]  E. Wright,et al.  Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences , 2015, Diabetes & vascular disease research.

[77]  J. Khinast,et al.  Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations. , 2014, International journal of pharmaceutics.

[78]  S. Jana,et al.  Exploiting supramolecular synthons in designing gelators derived from multiple drugs. , 2014, Chemistry.

[79]  M. Eddleston,et al.  An investigation of the causes of cocrystal dissociation at high humidity. , 2014, Journal of pharmaceutical sciences.

[80]  M. Eddleston,et al.  Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms. , 2014, Journal of pharmaceutical sciences.

[81]  T. Rades,et al.  Refining stability and dissolution rate of amorphous drug formulations , 2014, Expert opinion on drug delivery.

[82]  Teresa W. Makowski,et al.  Commercial Route Research and Development for SGLT2 Inhibitor Candidate Ertugliflozin , 2014 .

[83]  N. Rodríguez-Hornedo,et al.  Pharmaceutical cocrystals and poorly soluble drugs. , 2013, International journal of pharmaceutics.

[84]  Gary Montague,et al.  Risk-based decision making in early chemical process development of pharmaceutical and fine chemical industries , 2013, Comput. Chem. Eng..

[85]  Jonathan W Steed,et al.  The role of co-crystals in pharmaceutical design. , 2013, Trends in pharmacological sciences.

[86]  Robin D. Rogers,et al.  Understanding the Effects of Ionicity in Salts, Solvates, Co-Crystals, Ionic Co-Crystals, and Ionic Liquids, Rather than Nomenclature, Is Critical to Understanding Their Behavior , 2013 .

[87]  M. Eddleston,et al.  Cocrystal dissociation and molecular demixing in the solid state. , 2012, Chemical communications.

[88]  Atsushi Noda,et al.  Discovery of Ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. , 2012, Bioorganic & medicinal chemistry.

[89]  Gargi Mukherjee,et al.  Polymorphs, Salts, and Cocrystals: What’s in a Name? , 2012 .

[90]  George Zografi,et al.  Assessing the performance of amorphous solid dispersions. , 2012, Journal of pharmaceutical sciences.

[91]  A. Nangia,et al.  Fast dissolving eutectic compositions of two anti-tubercular drugs , 2012 .

[92]  P. Karpiński,et al.  LCZ696: a dual-acting sodium supramolecular complex , 2012 .

[93]  Chuanbin Wu,et al.  Improving the Chemical Stability of Amorphous Solid Dispersion with Cocrystal Technique by Hot Melt Extrusion , 2012, Pharmaceutical Research.

[94]  D. Braga,et al.  Ionic Co-crystals of Organic Molecules with Metal Halides: A New Prospect in the Solid Formulation of Active Pharmaceutical Ingredients , 2011 .

[95]  Sarah L Price,et al.  Computational prediction of salt and cocrystal structures--does a proton position matter? , 2011, International journal of pharmaceutics.

[96]  C. Strachan,et al.  Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding , 2011, Pharmaceutics.

[97]  K. Nagapudi,et al.  Application of Twin Screw Extrusion in the Manufacture of Cocrystals, Part I: Four Case Studies , 2011, Pharmaceutics.

[98]  Miranda L. Cheney,et al.  Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. , 2011, Journal of pharmaceutical sciences.

[99]  William Jones,et al.  Benefits of cocrystallisation in pharmaceutical materials science: an update , 2010, The Journal of pharmacy and pharmacology.

[100]  P. York,et al.  Cocrystalization and Simultaneous Agglomeration Using Hot Melt Extrusion , 2010, Pharmaceutical Research.

[101]  K. Nagapudi,et al.  Manufacture of pharmaceutical co-crystals using twin screw extrusion: a solvent-less and scalable process. , 2010, Journal of pharmaceutical sciences.

[102]  D. Good,et al.  Cocrystal Eutectic Constants and Prediction of Solubility Behavior , 2010 .

[103]  R. Suryanarayanan,et al.  Local mobility in amorphous pharmaceuticals--characterization and implications on stability. , 2009, Journal of pharmaceutical sciences.

[104]  Naír Rodríguez-Hornedo,et al.  Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility , 2009 .

[105]  P. Karamertzanis,et al.  Salt or Cocrystal? A New Series of Crystal Structures Formed from Simple Pyridines and Carboxylic Acids , 2009 .

[106]  R. Tan,et al.  Dimorphs of a 1 : 1 cocrystal of ethenzamide and saccharin: solid-state grinding methods result in metastable polymorph , 2009 .

[107]  A. Newman,et al.  Pharmaceutical Cocrystals and Their Physicochemical Properties , 2009, Crystal growth & design.

[108]  C. C. Seaton,et al.  Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients , 2008 .

[109]  Seik Weng Ng,et al.  Unprecedented sodium–oxygen clusters in the solid-state structure of trisodium hydrogentetravalproate monohydrate: A model for the physiological activity of the anticonvulsant drug Epilim® , 2008 .

[110]  Andrew D. Bond,et al.  What is a co-crystal? , 2007 .

[111]  T. Friščić,et al.  Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. , 2007, Molecular pharmaceutics.

[112]  Aeri Park,et al.  The salt-cocrystal continuum: the influence of crystal structure on ionization state. , 2007, Molecular pharmaceutics.

[113]  Matthew L Peterson,et al.  Celecoxib:nicotinamide dissociation: using excipients to capture the cocrystal's potential. , 2007, Molecular pharmaceutics.

[114]  Ivan Marziano,et al.  Critical assessment of pharmaceutical processes--A rationale for changing the synthetic route. , 2006, Chemical reviews.

[115]  Julie M. Schoenung,et al.  Technical Cost Modeling for the Mechanical Milling at Cryogenic Temperature (Cryomilling) , 2004 .

[116]  I. Carabin,et al.  Generally recognized as safe (GRAS): history and description. , 2004, Toxicology letters.

[117]  Deliang Zhou,et al.  Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. , 2002, Journal of pharmaceutical sciences.

[118]  Donald C. Monkhouse,et al.  Review ArticlePharmaceutical Salts , 1977 .