The circular mark projection error compensation in camera calibration

Abstract For center deviation of space circular mark in the perspective projection transformation process, a novel method is proposed in this paper to locate the real projection center precisely based on the theory of analytic geometry and spatial perspective. First, we analyze the spatial circle error of perspective projection transforms generated and gives relevant basic principles. Then the detailed implementation of the algorithm and the specific steps are presented. Finally through the experiments verify the effectiveness of the method. Simulation and experimental results indicate that this method can achieve the actual projection point precise positioning of the space circular target. The algorithm does not require additional complex constraints and has good robustness; therefore it has a wide range of practical engineering application value.

[1]  Janne Heikkilä,et al.  Geometric Camera Calibration Using Circular Control Points , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Thomas S. Huang,et al.  Image processing , 1971 .

[3]  Christopher O. Jaynes,et al.  Center-of-mass variation under projective transformation , 2007, Pattern Recognit. Lett..

[4]  Zhi-Qiang Liu,et al.  A robust, real-time ellipse detector , 2005, Pattern Recognit..

[5]  Guangjun Zhang,et al.  Calibrating camera radial distortion with cross-ratio invariability , 2003 .

[6]  Shuanghe Yu,et al.  The location and identification of concentric circles in automatic camera calibration , 2013 .

[7]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[8]  Li Zhu,et al.  A novel planar calibration method using the iterative correction of control points information , 2013 .

[9]  Luis Ángel Ruiz Fernández,et al.  Non-linear fourth-order image interpolation for subpixel edge detection and localization , 2008, Image Vis. Comput..

[10]  I. Vaughan L. Clarkson,et al.  Maximum-likelihood estimation of circle parameters via convolution , 2006, IEEE Transactions on Image Processing.

[11]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hans-Jürgen Warnecke,et al.  Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola , 2001, Pattern Recognit..

[13]  Ju Huo,et al.  The high precision positioning algorithm of circular landmark center in visual measurement , 2014 .

[14]  Hongbin Zha,et al.  An Efficient Method for the Detection of Projected Concentric Circles , 2007, 2007 IEEE International Conference on Image Processing.

[15]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Edmund Y Lam,et al.  Automatic source camera identification using the intrinsic lens radial distortion. , 2006, Optics express.

[17]  Iuri Frosio,et al.  Real-time accurate circle fitting with occlusions , 2008, Pattern Recognit..

[18]  Siu-Yeung Cho,et al.  Edge curvature and convexity based ellipse detection method , 2012, Pattern Recognit..

[19]  Susanto Rahardja,et al.  A Split and Merge Based Ellipse Detector With Self-Correcting Capability , 2011, IEEE Transactions on Image Processing.

[20]  Howon Kim,et al.  A New Camera Caibration Method using Concentric Circles for Vision Applications , 2002 .

[21]  Jun-Sik Kim,et al.  Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.