Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods
暂无分享,去创建一个
[1] Kevin Burrage,et al. High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula , 1999 .
[2] Hiroshi Kunita,et al. On the representation of solutions of stochastic differential equations , 1980 .
[3] Yoshihiro Saito,et al. Simulation of stochastic differential equations , 1993 .
[4] 池田 信行,et al. Stochastic differential equations and diffusion processes , 1981 .
[5] Tetsuya Misawa,et al. Conserved Quantities and Symmetries Related to Stochastic Dynamical Systems , 1999 .
[6] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[7] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[8] Simon M. J. Lyons. Introduction to stochastic differential equations , 2011 .
[9] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[10] G. N. Milstein,et al. Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..
[11] H. Owhadi,et al. Stochastic Variational Integrators , 2007, 0708.2187.
[12] Tetsuya Misawa. A Lie Algebraic Approach to Numerical Integration of Stochastic Differential Equations , 2001, SIAM J. Sci. Comput..
[13] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[14] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[15] Simon J. A. Malham,et al. Stochastic Lie Group Integrators , 2007, SIAM J. Sci. Comput..