Damping Behavior of Semi-passive Vibration Control using Shunted Piezoelectric Materials

Piezoelectric transducers in conjunction with appropriate electric networks can be used as mechanical energy dissipation devices. Semi-passive vibration control devices using nonlinear methods have experienced significant development in recent years, due to their performance and advantages compared with passive and active techniques. More precisely, synchronized switch damping (SSD) and derived techniques, which have been developed in the field of piezoelectric damping, lead to a very good trade-off between simplicity, required power supply, and performance. This technique consists of nonlinear processing of the piezoelement voltage which induces an increase in electromechanical energy conversion. The control law consists of triggering the inverting switch on each extremum of voltage (or displacement). The purpose of this study is the experimental observation of piezoelement damping sensitivity to variations of amplitude and frequency of excitation force. In addition, the effect of the size of piezoelement area on the vibration damping in high and low values of these parameters has been studied using SSDI method. The proposed method for switching sequence is based on statistical evaluation of the structural deflection.

[1]  W. Cady,et al.  The Piezo-Electric Resonator , 1922, Proceedings of the Institute of Radio Engineers.

[2]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[3]  Harry F. Olson,et al.  Electronic Control of Noise, Vibration, and Reverberation , 1956 .

[4]  W. Thomson Theory of vibration with applications , 1965 .

[5]  J. Roberts On the response of a simple oscillator to random impulses , 1966 .

[6]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[7]  Leonard Meirovitch,et al.  Methods of analytical dynamics , 1970 .

[8]  D. S. Steinberg,et al.  Vibration analysis for electronic equipment , 1973 .

[9]  Masaru Sakata,et al.  Calculation of the non-stationary mean square response of a non-linear system subjected to non-white excitation , 1980 .

[10]  Glenn E. Warnaka,et al.  Active Attenuation of Noise: The State of the Art , 1982 .

[11]  M. Rabins,et al.  Semi‐Active versus Passive or Active Tuned Mass Dampers for Structural Control , 1983 .

[12]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[13]  Loren D. Lutes,et al.  Non-Normal Stochastic Response of Linear Systems , 1986 .

[14]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[15]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[16]  Philip A. Nelson,et al.  Active Control of Sound , 1990 .

[17]  G. I. Schuëller,et al.  Non-Gaussian Response of Linear Systems , 1991 .

[18]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[19]  Philip A. Nelson,et al.  Active Control of Sound , 1992 .

[20]  Santosh Devasia,et al.  Piezoelectric actuator design for vibration suppression - Placement and sizing , 1993 .

[21]  Joseph J. Hollkamp,et al.  A Self-Tuning Piezoelectric Vibration Absorber , 1994 .

[22]  Singiresu S. Rao,et al.  Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey , 1994 .

[23]  Peter H. Rogers,et al.  State switched acoustic source , 1994 .

[24]  J. Hollkamp Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts , 1994 .

[25]  Gary H. Koopmann,et al.  Inertial piezoceramic actuators for smart structures , 1995, Smart Structures.

[26]  Paulo Sergio Varoto,et al.  Vibration Testing: Theory and Practice , 1995 .

[27]  C. A. Rogers,et al.  Integration and Design of Piezoceramic Elements in Intelligent Structures , 1995 .

[28]  C. Davis,et al.  A modal strain energy approach to the prediction of resistively shunted piezoceramic damping , 1995 .

[29]  C. D. Johnson,et al.  Design of Passive Damping Systems , 1995 .

[31]  Colin H. Hansen,et al.  Active control of vibration , 1996 .

[32]  Gregg D. Larson,et al.  The analysis and realization of a state switched acoustic transducer , 1996 .

[33]  George P. Simon,et al.  Characterization of mechanical vibration damping by piezoelectric materials , 1996 .

[34]  George A. Lesieutre,et al.  Tunable electrically shunted piezoceramic vibration absorber , 1997, Smart Structures.

[35]  Meng-Shiun Tsai,et al.  Some insights on active-passive hybrid piezoelectric networks for structural controls , 1997, Smart Structures.

[36]  Andrew S. Bicos,et al.  Structural vibration damping experiments using improved piezoelectric shunts , 1997, Smart Structures.

[38]  Shu-yau Wu,et al.  Method for multiple-mode shunt damping of structural vibration using a single PZT transducer , 1998, Smart Structures.

[39]  George A. Lesieutre,et al.  Vibration damping and control using shunted piezoelectric materials , 1998 .

[40]  Peter H. Rogers,et al.  State switched transducers: A new approach to high-power, low-frequency, underwater projectors , 1998 .

[41]  Daniel Guyomar,et al.  Semi-passive damping using continuous switching of a piezoelectric device , 1999, Smart Structures.

[42]  William W. Clark,et al.  Semi-active vibration control with piezoelectric materials as variable-stiffness actuators , 1999, Smart Structures.

[43]  Daniel J. Inman,et al.  Uniform model for series R-L and parallel R-L shunt circuits and power consumption , 1999, Smart Structures.

[44]  Dimitris A. Saravanos,et al.  DAMPED VIBRATION OF COMPOSITE PLATES WITH PASSIVE PIEZOELECTRIC-RESISTOR ELEMENTS , 1999 .

[45]  Meng-Shiun Tsai,et al.  ON THE STRUCTURAL DAMPING CHARACTERISTICS OF ACTIVE PIEZOELECTRIC ACTUATORS WITH PASSIVE SHUNT , 1999 .

[46]  Claude Richard,et al.  Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor , 2000, Smart Structures.

[47]  N. Ferguson,et al.  Variations in steepness of the probability density function of beam random vibration , 2000 .

[48]  Michael Strassberger,et al.  Active noise reduction by structural control using piezo-electric actuators , 2000 .

[49]  W. Clark Vibration Control with State-Switched Piezoelectric Materials , 2000 .

[50]  George A. Lesieutre,et al.  AN ACTIVELY TUNED SOLID-STATE VIBRATION ABSORBER USING CAPACITIVE SHUNTING OF PIEZOELECTRIC STIFFNESS , 2000 .

[51]  Daniel J. Inman,et al.  Active modal control for smart structures , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  Experimental Investigation of Control Logic for State-Switched Dampers , 2001 .

[53]  S. O. Reza Moheimani,et al.  New method for multiple-mode shunt damping of structural vibration using a single piezoelectric transducer , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[54]  Mehdi Ahmadian,et al.  Recent advances in the use of piezoceramics for vibration suppression , 2001 .

[55]  Shu-yau Wu Broadband piezoelectric shunts for passive structural vibration control , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[56]  G. Caruso A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping , 2001 .

[57]  Vijay K. Varadan,et al.  Passive underwater acoustic damping using shunted piezoelectric coatings , 2001 .

[58]  Tae-Song Kim,et al.  Optimal design of piezoelectric cantilever for a micro power generator with microbubble , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[59]  D. Guyomar,et al.  Effect of (Mn, F) and (Mg, F) co-doping on dielectric and piezoelectric properties of lead zirconate titanate ceramics , 2002 .

[60]  Seung-Bok Choi,et al.  Noise reduction of passive and active hybrid panels , 2002 .

[61]  William W. Clark,et al.  Comparison of low-frequency piezoelectric switching shunt techniques for structural damping , 2002 .

[62]  S. Fleeter,,et al.  Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations , 2002 .

[63]  Hwan-Sik Yoon,et al.  Optimization of Electrical Output in Response to Mechanical Input in Piezoceramic Laminated Shells , 2003 .

[64]  Mohan D. Rao,et al.  Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes , 2003 .

[65]  Daniel J. Inman,et al.  Enhanced Piezoelectric Shunt Design , 1998, Adaptive Structures and Material Systems.

[66]  William W. Clark,et al.  A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator , 2003 .

[67]  Claude Richard,et al.  A broadband semi passive piezoelectric technique for structural damping , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[68]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[69]  Lothar Gaul,et al.  Vibration Reduction of a Fluid-loaded Plate by Modal Control , 2005 .

[70]  D. Guyomar,et al.  Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction , 2005 .

[71]  William H. Semke,et al.  Broad-band Viscoelastic Rotational Vibration Control for Remote Sensing Applications , 2005 .

[72]  D. Guyomar,et al.  Toward energy harvesting using active materials and conversion improvement by nonlinear processing , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[73]  L. Gaudiller,et al.  Adaptive active control of flexible structures subjected to rigid body displacements , 2005 .

[74]  Adrien Badel,et al.  Récupération d'énergie et contrôle vibratoire par éléments piézoélectriques suivant une approche non linéaire , 2005 .

[75]  D. Guyomar,et al.  Piezoelectric Energy Harvesting using a Synchronized Switch Technique , 2006 .

[76]  Adrien Badel,et al.  Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic approach , 2006 .

[77]  J. Qiu,et al.  Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping , 2006 .

[78]  Claude Richard,et al.  Single crystals and nonlinear process for outstanding vibration-powered electrical generators , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[79]  L. Gaudiller,et al.  A Nonlinear Method for Improving the Active Control Efficiency of Smart Structures Subjected to Rigid Body Motions , 2007, IEEE/ASME Transactions on Mechatronics.

[80]  Daniel Guyomar,et al.  Semi-passive random vibration control based on statistics , 2007 .