In situ construction of a multifunctional interlayer for garnet-type electrolytes to suppress lithium dendrite formation in solid-state lithium batteries

[1]  Ying Tian,et al.  The vertically network modifications on Li/Garnet interface for prolonging Li metal batteries life , 2023, Journal of Alloys and Compounds.

[2]  Sreejith O.V.,et al.  An enhanced interface between garnet solid electrolyte and lithium through multifunctional lithium titanate anode-additive for solid-state lithium batteries , 2023, Journal of Alloys and Compounds.

[3]  Xiaobo Ji,et al.  In-situ construction of multifunctional interlayer enabled dendrite-free garnet-based solid-state batteries , 2023, Nano Energy.

[4]  A. Kozlovskiy,et al.  Impact of Thermobaric Conditions on Phase Content, Magnetic and Electrical Properties of the Cofe2o4 Ceramics , 2023, SSRN Electronic Journal.

[5]  Xiangfeng Liu,et al.  Constructing a Superlithiophilic 3D Burr‐Microsphere Interface on Garnet for High‐Rate and Ultra‐Stable Solid‐State Li Batteries , 2023, Advanced science.

[6]  Delai Qian,et al.  Green recycling of short-circuited garnet-type electrolyte for high-performance solid-state lithium batteries , 2023, Journal of Energy Chemistry.

[7]  Bingbing Tian,et al.  H3PO4-Induced Nano-Li3PO4 Pre-reduction Layer to Address Instability between the Nb-Doped Li7La3Zr2O12 Electrolyte and Metallic Li Anode. , 2023, ACS applied materials & interfaces.

[8]  Chaoyang Wang,et al.  Asymmetrical Interface Modification between Electrode S and Garnet-Type Electrolyte Enabling All-Solid-State Lithium Batteries , 2023, SSRN Electronic Journal.

[9]  I. Ali,et al.  Synthesis and Characterization of Composites with Y-Hexaferrites for Electromagnetic Interference Shielding Applications , 2022, Magnetochemistry.

[10]  Dong Wang,et al.  Lead-Free Relaxor Ferroelectric Ceramics with Ultrahigh Energy Storage Densities via Polymorphic Polar Nanoregions Design. , 2022, Small.

[11]  H. Hou,et al.  Fluorine Substitution at the O-Site Imparts Enhanced Chemical Stability for Garnet-Structured Electrolytes , 2022, ACS Energy Letters.

[12]  Chenyang Zhao,et al.  A Bridge between Ceramics Electrolyte and Interface Layer to Fast Li+ Transfer for Low Interface Impedance Solid‐State Batteries , 2022, Advanced Functional Materials.

[13]  Z. Bi,et al.  Molten Salt Driven Conversion Reaction Enabling Lithiophilic and Air‐Stable Garnet Surface for Solid‐State Lithium Batteries , 2022, Advanced Functional Materials.

[14]  Chi Chen,et al.  All‐Electric Nonassociative Learning in Nickel Oxide , 2022, Adv. Intell. Syst..

[15]  H. Duan,et al.  Origin of Lithiophilicity of Lithium Garnets: Compositing or Cleaning? , 2022, Advanced Functional Materials.

[16]  Jin Leng,et al.  A Facile and Low-Cost Wet-Chemistry Artificial Interface Engineering for Garnet-Based Solid-State Li Metal Batteries , 2022, SSRN Electronic Journal.

[17]  Kangli Wang,et al.  Low-cost Molten Salt Coating Enabling Robust Li/garnet Interface for Dendrite-free All-solid-state Lithium Batteries , 2022, Chemical Engineering Journal.

[18]  M. H. Lee,et al.  Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries , 2022, Science advances.

[19]  S. Trukhanov,et al.  Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites , 2022, Nanomaterials.

[20]  Honglei Wang,et al.  Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries , 2022, Journal of Advanced Ceramics.

[21]  L. Wan,et al.  Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries. , 2022, Journal of the American Chemical Society.

[22]  Byung Gon Kim,et al.  In Situ Formed Ag‐Li Intermetallic Layer for Stable Cycling of All‐Solid‐State Lithium Batteries , 2021, Advanced science.

[23]  Liquan Chen,et al.  Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates , 2021, ACS Energy Letters.

[24]  Yunhui Huang,et al.  An Oxygen Vacancy-Rich ZnO Layer on Garnet Electrolyte Enables Dendrite-Free Solid State Lithium Metal Batteries , 2021, Chemical Engineering Journal.

[25]  Fei Chen,et al.  Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries , 2021, Journal of Advanced Ceramics.

[26]  Zachary D. Hood,et al.  Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes , 2021, Nature Materials.

[27]  A. Kozlovskiy,et al.  Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application , 2021, Journal of Materials Science: Materials in Electronics.

[28]  X. Lou,et al.  A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers , 2021, Science Advances.

[29]  L. Arava,et al.  An All-Solid-State Battery with a Tailored Electrode–Electrolyte Interface Using Surface Chemistry and Interlayer-Based Approaches , 2021 .

[30]  Arvind Kumar,et al.  Tunable Electronic Trap Energy in Sol-Gel Processed Dielectrics , 2021, IEEE Transactions on Electron Devices.

[31]  A. Kozlovskiy,et al.  Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses , 2021 .

[32]  Yong Yang,et al.  Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes , 2021, Journal of Materials Chemistry A.

[33]  A. Kozlovskiy,et al.  Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles , 2021, Journal of Materials Science: Materials in Electronics.

[34]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[35]  Ming Jia,et al.  Transition metal dichalcogenides in alliance with Ag ameliorate the interfacial connection between Li anode and garnet solid electrolyte , 2020 .

[36]  S. Mondal Controllable surface contact resistance in solution-processed thin-film transistors due to dimension modification , 2020, Semiconductor Science and Technology.

[37]  Artem Kozlovskiy,et al.  Evaluation of the Efficiency of Detection and Capture of Manganese in Aqueous Solutions of FeCeOx Nanocomposites Doped with Nb2O5 , 2020, Sensors.

[38]  Hongli Zhu,et al.  Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations , 2020 .

[39]  A. Kozlovskiy,et al.  Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications , 2020, Journal of Materials Science: Materials in Electronics.

[40]  X. Wang,et al.  In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries , 2020, Materials Today Nano.

[41]  Hong‐Jie Peng,et al.  Garnet Solid Electrolyte for Advanced All‐Solid‐State Li Batteries , 2020, Advanced Energy Materials.

[42]  O. Lazarenko,et al.  Effect of Ga content on magnetic properties of BaFe12−xGaxO19/epoxy composites , 2020, Journal of Materials Science.

[43]  L. Wan,et al.  Solid-solution based metal alloy phase for highly reversible lithium metal anode. , 2020, Journal of the American Chemical Society.

[44]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[45]  V. Venkataraman,et al.  Gate-Controllable Electronic Trap Detection in Dielectrics , 2020, IEEE Electron Device Letters.

[46]  Chen‐Zi Zhao,et al.  Controlling Dendrite Growth in Solid-State Electrolytes , 2020 .

[47]  A. Kozlovskiy,et al.  Features of the Growth Processes and Magnetic Domain Structure of NiFe Nano-objects , 2019, The Journal of Physical Chemistry C.

[48]  J. Janek,et al.  Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure , 2019, Advanced Energy Materials.

[49]  P. Bruce,et al.  Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells , 2019, Nature Materials.

[50]  A. Kozlovskiy,et al.  Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni) , 2019, Journal of Materials Science: Materials in Electronics.

[51]  V. Venkataraman,et al.  All inorganic solution processed three terminal charge trapping memory device , 2019, Applied Physics Letters.

[52]  Yongyao Xia,et al.  Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer , 2019, Journal of Power Sources.

[53]  Wolfgang G. Zeier,et al.  Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12. , 2019, ACS applied materials & interfaces.

[54]  V. Venkataraman,et al.  Low temperature below 200 °C solution processed tunable flash memory device without tunneling and blocking layer , 2019, Nature Communications.

[55]  Yang Shen,et al.  Microstructure Manipulation for Enhancing the Resistance of Garnet-Type Solid Electrolytes to "Short Circuit" by Li Metal Anodes. , 2019, ACS applied materials & interfaces.

[56]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[57]  Henghui Xu,et al.  Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. , 2018, Nano letters.

[58]  Rui Zhang,et al.  Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries , 2018 .

[59]  R. Behm,et al.  Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries , 2018 .

[60]  Donald J. Siegel,et al.  Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 , 2017 .

[61]  V. Venkataraman,et al.  Tunable electron affinity with electronic band alignment of solution processed dielectric , 2017 .

[62]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[63]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[64]  M. Verbrugge,et al.  Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. , 2016, Nano letters.

[65]  Hiroaki Iino,et al.  Solution-Processed, Low-Voltage Polycrystalline Organic Field-Effect Transistor Fabricated Using Highly Ordered Liquid Crystal With Low- $k$ Gate Dielectric , 2016, IEEE Electron Device Letters.

[66]  Y. Qi,et al.  General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes , 2015 .

[67]  R. P. Rao,et al.  In Situ Neutron Diffraction Monitoring of Li7La3Zr2O12 Formation: Toward a Rational Synthesis of Garnet Solid Electrolytes. , 2015 .

[68]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[69]  T. Takamura,et al.  Evaluation of the Diffusion Coefficient of Li in Ag Using a Li+ Sensor Electrode Mounted in a Bipolar Cell , 2006 .

[70]  S. Trukhanov Investigation of stability of ordered manganites , 2005 .

[71]  H. Szymczak,et al.  Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3-γ , 2000 .

[72]  A. Pelton The Ag−Li (Silver-Lithium) system , 1986 .

[73]  T. Jow,et al.  Interface Between Solid Electrode and Solid Electrolyte—A Study of the Li / LiI ( Al2 O 3 ) Solid‐Electrolyte System , 1983 .

[74]  L. Pang,et al.  Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in Na2O-Bi2O3-MoO3 ternary system: A comprehensive study , 2022, Journal of Materials Chemistry C.

[75]  Jie Wang,et al.  Enabling a compatible Li/garnet interface via a multifunctional additive of sulfur , 2022, Journal of Materials Chemistry A.

[76]  L. Panina,et al.  Evolution of structure and physical properties in Al-substituted Ba-hexaferrites , 2015 .